-

Cuidados Paliativos

Analgesia e sedação em pacientes com síndrome do desconforto respiratório agudo (SDRA)

Postado em

A síndrome do desconforto respiratório agudo (SDRA) é uma condição exigente em uma UTI, o manejo da analgesia e da sedação é desafiador.

 

A síndrome do desconforto respiratório agudo (SDRA) é uma das condições mais exigentes em uma Unidade de Terapia Intensiva (UTI). Na SDRA, o manejo da analgesia e da sedação é particularmente desafiador. As diretrizes atuais de analgesia/sedação na UTI promovem a analgesia primeiro e a minimização da sedação, aumento da vigília, prevenção do delirium e reabilitação precoce para facilitar a ventilação mecânica (VM) e a “liberação” da UTI o mais rápido possível. No entanto, essas estratégias nem sempre podem ser aplicadas a pacientes com SDRA que, às vezes, requerem sedação profunda e/ou paralisia. Além disso, pacientes com SDRA grave podem ser pouco representados em estudos de analgesia/sedação e as estratégias atualmente recomendadas podem, portanto, não ser viáveis.

No artigo de revisão Analgesia and sedation in patients with ARDS, recentemente publicado no jornal Intensive Care Medicine, Chanques e colaboradores (2020) elaboraram recomendações para o manejo ideal da analgesia/sedação em adultos com SDRA em VM, incluindo pacientes com Covid-19. Tópicos relevantes destacados no artigo são resumidos a seguir.

Pacientes recebendo bloqueador neuromuscular (BNM) na fase inicial de SDRA grave:

  • Os BNM devem ser considerados, no máximo, como uma terapia de resgate para pacientes com SDRA mais grave;
  • As recomendações atuais de melhores práticas clínicas recomendam sedação profunda, amnésia e analgesia eficaz antes do BNM. Antes da administração de um BNM, os pacientes devem receber um analgésico endovenoso (EV) para alívio da dor, assim como um sedativo com propriedades amnésticas, como propofol ou um benzodiazepínico, e não a dexmedetomidina;
  • Uma escala validada deve ser usada para avaliação da dor, como a Behavioral Pain Scale (BPS) ou a Critical-Care Pain Observation Tool (CPOT), assim como deve ser usada uma escala validada para a avaliação da sedação, como a Sedation Agitation Scale (SAS) [20] ou a Richmond Agitation Sedation Scale (RASS);
  • Novas abordagens para avaliação de dor nesses pacientes têm sido estudadas, porém necessitam de validação adicional, como a avaliação isolada da variabilidade da frequência cardíaca pelo 0–100 Analgesia Nociception Index, ou em combinação com outros parâmetros fisiológicos (0–100 Nociception Level Index) ou através do aumento do tamanho pupilar;
  • Como a interrupção diária da sedação (IDS) é empregada frequentemente em muitas UTI, a infusão contínua de BNM deve ser também considerada diariamente e a sedação leve ou a suspensão da sedação só deve ocorrer após parar a infusão do BNM.

Estratégia geral de analgesia/sedação para ventilação protetora pulmonar sem BNM:

  • Pode-se classificar a profundidade da sedação em: leve (RASS +1/-1), moderada (RASS -2/-3) e profunda (RASS -4/-5);
  • O objetivo de uma sedação mínima ou nenhuma sedação na maioria dos pacientes prioriza a analgesia adequada e agentes sedativos de curta ação conforme necessário;
  • Intervalos curtos de sedação moderada (RASS -2 / -3) devem ser aceitos para superar a assincronia ou desconforto do ventilador após a otimização do controle da dor e das configurações da máquina;
  • O nível de sedação deve ser monitorado regularmente com uma ferramenta validada e o nível de sedação alvo deve ser reavaliado pelo menos duas vezes ao dia;
  • Dor e delirium devem ser avaliados rotineiramente com ferramentas validadas;
  • As doses de todos os medicamentos devem ser tituladas para se atingir um alvo de sedação definido;
  • Ocasionalmente, pode ser necessária sedação profunda (RASS -4 / -5). Nesse caso, os sedativos devem ser escolhidos com base na idade do paciente, funções orgânicas e comorbidades;
  • Em todos os casos, o manejo do ventilador mecânico e do drive respiratório do paciente devem ser avaliados antes, para evitar o uso desnecessário de sedativos e o risco de induzir sedação profunda.

Alternativas de analgesia e sedação em um contexto de escassez de medicamentos

As dificuldades de sedação em pacientes graves têm sido agravadas por interrupções relacionadas ao abastecimento de opções terapêuticas tradicionais como resultado do aumento da demanda, diminuição dos estoques, bloqueios temporários de fabricação e restrições à exportação. À medida que essas carências evoluem, medicamentos menos comumente usados ​​podem precisar ser considerados para obter analgesia, sedação ou paralisia, no entanto, as recomendações para uso desses fármacos são limitadas. O uso de agentes alternativos deve ser orientado pelo contexto individual do paciente, objetivos da terapia, resposta e tolerabilidade. Na ausência de novas evidências, a familiaridade com agentes alternativos devido à escassez de um agente convencional não deve levar à sua continuação quando agentes de uso comprovado estiverem disponíveis.

Estratégias para evitar sedação excessiva e atrasos na recuperação cognitiva e desmame da VM

O uso de drogas de curta duração com nenhum ou mínimo metabólitos ativos (por exemplo, propofol, dexmedetomidina, fentanil, sufentanil, remifentanil) pode estar associado a melhores resultados, mas podem ser caros e sua disponibilidade é limitada em situações de recursos limitados, como na atual pandemia de Covid-19.

Estratégias de administração: algoritmos, interrupção diária e administração intermitente

O uso de protocolos de analgesia/sedação dirigidos pela enfermagem pode reduzir a exposição ao medicamento e acelerar a retirada da VM e a alta da UTI. Entretanto, o papel da enfermagem e sua capacidade de ajustar a analgesia/sedação com base em um protocolo ou não, depende da organização, cultura e possibilidades jurídicas da UTI. O papel do médico também é primordial, para ajudar no ajuste da dosagem dos medicamentos, ou para discutir questões específicas com a equipe da UTI, e para discutir o objetivo geral da analgesia/sedação individualmente.

A IDS em pacientes recebendo opioides/sedativos em infusão contínua tem sido associada à redução da duração da VM e outros benefícios, provavelmente porque leva a uma reavaliação das necessidades de sedativos, reduz o acúmulo de medicação e promove uma transição para estratégias de administração intermitentes/“conforme necessário”. No entanto, quando adicionada a um protocolo de sedação que visa sedação leve, essa estratégia não reduz ainda mais os dias de VM.

Estratégias orientadas para os sintomas: analgesia primeiro e sedação baseada em analgésico

Essa estratégia favorece o uso de um analgésico antes de um sedativo para o controle da dor (“analgesia primeiro”) ou um analgésico com propriedades sedativas (“sedação baseada em analgésico”).

Uma abordagem multimodal para analgesia combina o uso de mais de um analgésico, cada um com diferentes mecanismos de ação. O uso de diferentes analgésicos pode atingir um efeito benéfico enquanto amortece os efeitos adversos de cada agente individual. Os pacientes podem ser protegidos dos efeitos colaterais dos opioides, como sedação, alucinações e hiperalgesia/dependência/abstinência pelo uso concomitante de agentes não opioides, como cetamina em baixas doses ou paracetamol, por exemplo. A titulação cuidadosa de analgésicos e intervenções não farmacológicas calmantes (por exemplo, música ou técnicas de relaxamento) podem ajudar a evitar atrasos na recuperação cognitiva.

Escolha de medicamentos

Os fatores relacionados ao paciente que determinam a escolha dos medicamentos incluem: a idade (idosos apresentam farmacocinética e farmacodinâmica diferentes, com depuração reduzida e sensibilidade aumentada a analgésicos, sedativos e antipsicóticos, correndo maior risco de VM prolongada, delirium e óbito, enquanto jovens podem requerer doses mais altas), dependência (pacientes que fazem uso crônico de opioides e/ou psicoativos podem necessitar de doses mais altas de opioides e/ou sedativos) e disfunção orgânica (a disfunção orgânica aguda ou crônica resulta em alterações farmacocinéticas e farmacodinâmicas).

Analgésicos

Opioides com início rápido, efeitos dose-dependentes e capacidade de reduzir o drive respiratório continuam sendo a base analgésica na SDRA. No entanto, eles apresentam efeitos adversos: imunossupressão; acúmulo resultando em sedação prolongada e depressão respiratória; tolerância em 48 horas; abstinência; hiperalgesia e dor crônica com uso prolongado, e íleo. Embora não tenham sido avaliados rigorosamente na SDRA, analgésicos não opioides (por exemplo, paracetamol e cetamina) usados de forma multimodal, podem reduzir o uso de opioides e seus efeitos adversos.

Sedativos

Propofol e midazolam reduzem o drive respiratório, causam imunossupressão e podem induzir sedação profunda. O propofol é preferível ao midazolam, pois tem menor probabilidade de resultar em sedação prolongada e/ou delirium, é mais titulável e sua depuração não depende da função hepática e renal. No entanto, pode causar hipertrigliceridemia e síndrome da infusão relacionada ao propofol, geralmente em doses ≥ 60 microgramas/kg/minuto.

A dexmedetomidina não causa imunossupressão nem reduz o impulso respiratório, tem propriedades poupadoras de analgésicos e, ao contrário do propofol ou midazolam, pode melhorar o sono e pode estar associada a uma menor prevalência de delirium. No entanto, um nível muito profundo de sedação não é possível apenas com a dexmedetomidina.

Anestésicos voláteis como isoflurano e sevoflurano podem induzir sedação leve a profunda, mesmo em pacientes difíceis de sedar com benzodiazepínicos e opioides, mas seu uso em UTI ainda é alvo de estudos. Além disso, é necessário um treinamento da equipe para seu uso.

Abordagem global de analgesia/sedação adaptada a pacientes com SDRA: proposta de uma primeira estratégia de manejo ventilatório

O manejo da VM antes de aumentar a profundidade da sedação pode ser considerado uma estratégia de primeira linha. A adição da letra “R” que leva em consideração o “controle do drive respiratório” pode ser um adicional útil ao ABCDEF Bundle para pacientes com SDRA (ABCDEF-R Bundle).

Sedação e analgesia em situações especiais

Posição prona

A sedação/analgesia deve ser otimizada durante o procedimento de virada e durante o tempo de pronação, pois o posicionamento pode ser doloroso. No entanto, não existem estudos prospectivos de sedação durante a posição prona, com BNM ou não. Estudos recentes não controlados relataram a viabilidade e segurança da ventilação prona em pacientes intubados com SDRA sob respiração assistida com uma leve sedação (agentes anestésicos voláteis) e pacientes não intubados sem sedação.

Circulação por membrana extracorpórea (ECMO)

O monitoramento cuidadoso do nível de sedação em pacientes em ECMO é de extrema importância. Os pacientes têm um risco adicional, ou seja, o deslocamento/mau funcionamento dos circuitos de ECMO, em particular as cânulas intravasculares. Além disso, a presença do sistema extracorpóreo tem o potencial de alterar significativamente a farmacocinética de vários medicamentos e, assim, reduzir sua biodisponibilidade. Devido ao aumento do volume de distribuição e sequestro, particularmente com drogas lipofílicas no sistema extracorpóreo, as concentrações plasmáticas da droga podem ser menores do que o esperado.

Covid-19

Houve mudanças nas primeiras experiências na pandemia com relação à abordagem da sedação, com uma tendência à sedação profunda e um ressurgimento do uso de infusões de benzodiazepínicos devido à escassez de propofol e fentanil e preocupações de que a lesão pulmonar observada com Covid-19 pode ser diferente e precisa de estratégias ventilatórias mais agressivas que requerem sedação profunda. Além disso, a agitação e a autoextubação, principalmente durante a posição prona, levaram ao medo da exposição dos profissionais de saúde. No entanto, cada dia de intubação desnecessária aumenta o risco de complicações relacionadas à VM, além dos profissionais de saúde não terem tempo suficiente para se proteger, aumentando o risco de contaminação. Chanques e colaboradores destacam que a questão da proteção do profissional de saúde é crucial, mas o risco de aerossóis virais durante os procedimentos padrão provavelmente foi superestimado e recomendam que os profissionais de saúde devem se concentrar nos princípios básicos comprovados de manejo de suporte na SDRA, mesmo em pacientes com Covid-19.

Resumindo

A analgesia e a sedação são desafiadoras em pacientes com SDRA. No entanto, as diretrizes atuais devem ser consideradas e aplicadas quando possível. Além disso, o acréscimo da letra R no A-F Bundle “ABCDEF-R” (R = controle da ventilação mecânica) deve ser considerado para dar prioridade ao manejo de fatores relacionados ao ventilador mecânico e evitar o uso desnecessário de medicamentos, particularmente opioides, sedativos e BNM, que podem atrasar a liberação do ventilador e piorar os desfechos nos pacientes.

Autor(a):

Roberta Esteves Vieira de Castro

Graduada em Medicina pela Faculdade de Medicina de Valença. Residência médica em Pediatria pelo Hospital Federal Cardoso Fontes. Residência médica em Medicina Intensiva Pediátrica pelo Hospital dos Servidores do Estado do Rio de Janeiro. Mestra em Saúde Materno-Infantil pela Universidade Federal Fluminense (Linha de Pesquisa: Saúde da Criança e do Adolescente). Doutora em Medicina pela Universidade do Estado do Rio de Janeiro (UERJ). Pós-graduanda em neurointensivismo pelo Instituto D’Or de Pesquisa e Ensino (IDOR). Médica da Unidade de Terapia Intensiva Pediátrica (UTIP) do Hospital Universitário Pedro Ernesto (HUPE) da UERJ. Membro da Rede Brasileira de Pesquisa em Pediatria do IDOR no Rio de Janeiro. Acompanhou as UTI Pediátrica e Cardíaca do Hospital for Sick Children (Sick Kids) em Toronto, Canadá, supervisionada pelo Dr. Peter Cox. Membro da Sociedade Brasileira de Pediatria (SBP) e da Associação de Medicina Intensiva Brasileira (AMIB). Membro do comitê de sedação, analgesia e delirium da AMIB. Membro do comitê de filiação da American Delirium Society (ADS). Coordenadora e cofundadora do Latin American Delirium Special Interest Group (LADIG). Membro de apoio da Society for Pediatric Sedation (SPS).

Referência bibliográfica:

Aspectos médicos e éticos da sedação paliativa (SP) no fim da vida

Postado em Atualizado em

Médico realiza sedação paliativa em paciente.

A sedação paliativa (SP) foi utilizada pela primeira vez na década de 1990 e consiste basicamente em proporcionar um grau de sedação profunda em pacientes que apresentam sintomas graves, intratáveis e refratários a todas as possibilidades terapêuticas possíveis próximo ao fim da vida.

Sintomas intratáveis e refratários são aqueles que apesar de múltiplos tratamentos e esforços não conseguem ser tratados ou foram estimados como inúteis por um consenso de toda a equipe, após repetidas avaliações de diferentes especialistas, com impossibilidade de promover alívio em tempo hábil que o paciente pudesse tolerar e causam prejuízo ao seu bem estar com grande efeito nocivo ao organismo interferindo no processo sereno da morte. Dentre os sintomas mais comuns e mais difíceis de serem controlados nessas situações estão o delirium e a dispneia seguidos de vômitos. A dor é considerada um dos menores sintomas refratários, sendo mais facilmente tratável e não necessitando de SP.

Quando realizar a sedação paliativa?

A decisão de realização da SP é bastante difícil e controversa, gerando muitas dúvidas, questionamentos e ansiedades por parte da equipe e dos parentes, uma vez que com o objetivo de retirar a consciência do paciente, muitas vezes de forma irreversível, impossibilita este de se comunicar com a família. Muitas dúvidas principalmente em relação ao local da realização do procedimento, manutenção de hidratação e nutrição e bioéticas são criadas em torno desse procedimento.

A SP é completamente diferente da eutanásia ou do suicídio assistido, uma vez que seu objetivo principal é proporcionar alívio dos sintomas refratários com doses proporcionais ao efeito desejado, de sedativos específicos sem o objetivo de abreviar o fim da vida do paciente. Enquanto a eutanásia ou suicídio assistido consiste basicamente na retirada da vida com a administração de doses letais causando a morte imediata do paciente.

É muito importante que a decisão da realização da SP seja extensamente discutida com os parentes e informado que esse procedimento é indicado pela total e completa ausência de qualquer outro método terapêutico e que o sofrimento do paciente é intenso. Sempre que possível realizar com o consentimento do paciente e explicar que o procedimento não retarda nem acelera a morte deste e que o objetivo maior é o bem estar do paciente e que em algumas situações pode ser reversível, caso a situação clínica do dele melhore.

Locais mais adequados:

A SP pode ser realizada tanto em ambiente hospitalar como em domicílio. A decisão irá depender do paciente ou de seus familiares.

Drogas utilizadas:

Midazolan é o fármaco de escolha para a SP uma vez que é uma droga de ação rápida, com facilidade de titulação, de boa aceitação, meia vida curta e possui um antagonista específico.

Neurolépticos e clorpromazina também podem ser indicados principalmente nos pacientes com sintomas de delirium. Já o uso de opioides pode produzir sudorese, agitação e piorar o quadro de delirium.

Monitorização:

Deve ser utilizada monitorização única e exclusiva para o conforto do paciente. Em determinadas situações, principalmente para evitar o estresse e desconforto dos familiares, a monitorização cardíaca e de pressão arterial deve ser descontinuada.

Hidratação e nutrição parenteral:

A decisão de continuar a hidratação e nutrição dos pacientes elegíveis a SP é bastante controversa e bate de frente com questões bioéticas. Alguns autores defendem sua continuação, uma vez que o paciente sedado não tem condição de ingerir líquidos ou alimentos e sua descontinuidade pode abreviar a vida. Outros acham que pode ser descontinuada de acordo com cada objetivo e crença cultural.

A polêmica em relação a nutrição parenteral gera muitas discussões éticas, médicas, jurídicas e financeiras, pois alguns autores acreditam que a retirada da nutrição artificial mesmo com o consentimento do paciente ou de familiares pode ser interpretada como uma eutanásia consensual, constituindo uma violação a integridade da profissão médica.

No Brasil, a manutenção da alimentação artificial nos pacientes terminais submetidos a sedação paliativa (SP), baseia-se no respeito as crenças individuais e no conforto psicológico dos parentes, mais do que qualquer parâmetro de melhora clínica.

Considerações bioéticas:

A SP é permissível eticamente seguindo os padrões de duplo efeito de proporcionalidade e autonomia e com a intenção explícita do alívio dos sintomas refratários sem o menor objetivo de abreviar a vida do paciente. Ou seja, é necessário haver razões proporcionais como refratariedade do sofrimento, sofrimento intolerável, más condições clínicas do paciente e respeito aos desejos dos pacientes e familiares.

A SP se difere completamente da eutanásia e do suicídio assistido pois em nenhum momento objetiva o fim da vida através do uso deliberado de doses letais de medicações específicas. A SP busca o alívio do sofrimento e não a morte.

Ainda existem artigos que questionam a decisão da realização de sedação paliativa (SP), onde sua realização não permanece isenta de consequências éticas, sendo necessário uma visão mais clara de todos os aspectos que envolvem essa prática.

Acredita-se que com a evolução da bioética personalista, onde o ser humano e a dignidade do mesmo são valores absolutos, ficará mais fácil a implementação da SP sem maiores discussões éticas e morais.

Autor(a):

Gabriela Queiroz

Graduação em Medicina pela Universidade do Estado do Rio de Janeiro (UERJ) ⦁ Pós-Graduação em Anestesiologia pelo Ministério da Educação (MEC) ⦁ Pós-Graduação em Anestesiologia pelo Centro de Especialização e Treinamento da Sociedade Brasileira de Anestesiologia (CET/SBA) ⦁ Membro da Sociedade Brasileira de Anestesiologia (SBA) ⦁ Ênfase em cirurgias de trauma e emergência, obstetrícia, plástica estética reconstrutiva e reparadora e procedimentos endoscópicos ⦁ Experiência em trauma e cirurgias de emergência de grande porte, como ortopedia, vascular e neurocirurgia ⦁ Experiência em treinamento acadêmico e liderança de grupos em ambiente cirúrgico hospitalar ⦁ Orientadora acadêmica junto à classe de residentes em Anestesiologia ⦁ Orientadora e auxiliar em palestras regionais e internacionais na área de Anestesiologia.

Referências bibliográficas:

  • Menezes MS, et al.O papel da sedação paliativa no fim da vida: aspectos médicos e éticos – Revisão. Brazilian Journal of Anesthesiology. 2019 Jan-Feb;69(1): 72-77.
  • M Maltoni. Palliative sedation in patients with cancer Cancer Control., 4 (2015), pp. 433-44.
  • K Hauser, D Walsh. Palliative sedation: Welcome guidance on a controversal issue. Palliat Med. 2009; 23:577-579. doi: 10.1177/0269216309107022

#Pathophysiology, Transmission, Diagnosis, and Treatment of #Coronavirus Disease 2019 (COVID-19)A Review W. Joost Wiersin

Postado em Atualizado em

Importance  The coronavirus disease 2019 (COVID-19) pandemic, due to the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has caused a worldwide sudden and substantial increase in hospitalizations for pneumonia with multiorgan disease. This review discusses current evidence regarding the pathophysiology, transmission, diagnosis, and management of COVID-19.

Observations  SARS-CoV-2 is spread primarily via respiratory droplets during close face-to-face contact. Infection can be spread by asymptomatic, presymptomatic, and symptomatic carriers. The average time from exposure to symptom onset is 5 days, and 97.5% of people who develop symptoms do so within 11.5 days. The most common symptoms are fever, dry cough, and shortness of breath. Radiographic and laboratory abnormalities, such as lymphopenia and elevated lactate dehydrogenase, are common, but nonspecific. Diagnosis is made by detection of SARS-CoV-2 via reverse transcription polymerase chain reaction testing, although false-negative test results may occur in up to 20% to 67% of patients; however, this is dependent on the quality and timing of testing. Manifestations of COVID-19 include asymptomatic carriers and fulminant disease characterized by sepsis and acute respiratory failure. Approximately 5% of patients with COVID-19, and 20% of those hospitalized, experience severe symptoms necessitating intensive care. More than 75% of patients hospitalized with COVID-19 require supplemental oxygen. Treatment for individuals with COVID-19 includes best practices for supportive management of acute hypoxic respiratory failure. Emerging data indicate that dexamethasone therapy reduces 28-day mortality in patients requiring supplemental oxygen compared with usual care (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]) and that remdesivir improves time to recovery (hospital discharge or no supplemental oxygen requirement) from 15 to 11 days. In a randomized trial of 103 patients with COVID-19, convalescent plasma did not shorten time to recovery. Ongoing trials are testing antiviral therapies, immune modulators, and anticoagulants. The case-fatality rate for COVID-19 varies markedly by age, ranging from 0.3 deaths per 1000 cases among patients aged 5 to 17 years to 304.9 deaths per 1000 cases among patients aged 85 years or older in the US. Among patients hospitalized in the intensive care unit, the case fatality is up to 40%. At least 120 SARS-CoV-2 vaccines are under development. Until an effective vaccine is available, the primary methods to reduce spread are face masks, social distancing, and contact tracing. Monoclonal antibodies and hyperimmune globulin may provide additional preventive strategies.

Conclusions and Relevance  As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

 

Introduction

 

The coronavirus disease 2019 (COVID-19) pandemic has caused a sudden significant increase in hospitalizations for pneumonia with multiorgan disease. COVID-19 is caused by the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 infection may be asymptomatic or it may cause a wide spectrum of symptoms, such as mild symptoms of upper respiratory tract infection and life-threatening sepsis. COVID-19 first emerged in December 2019, when a cluster of patients with pneumonia of unknown cause was recognized in Wuhan, China. As of July 1, 2020, SARS-CoV-2 has affected more than 200 countries, resulting in more than 10 million identified cases with 508 000 confirmed deaths (Figure 1). This review summarizes current evidence regarding pathophysiology, transmission, diagnosis, and management of COVID-19.

 

Methods

 

We searched PubMed, LitCovid, and MedRxiv using the search terms coronavirussevere acute respiratory syndrome coronavirus 22019-nCoVSARS-CoV-2SARS-CoVMERS-CoV, and COVID-19 for studies published from January 1, 2002, to June 15, 2020, and manually searched the references of select articles for additional relevant articles. Ongoing or completed clinical trials were identified using the disease search term coronavirus infection on ClinicalTrials.gov, the Chinese Clinical Trial Registry, and the International Clinical Trials Registry Platform. We selected articles relevant to a general medicine readership, prioritizing randomized clinical trials, systematic reviews, and clinical practice guidelines.

 

Observations

 

Pathophysiology

 

Coronaviruses are large, enveloped, single-stranded RNA viruses found in humans and other mammals, such as dogs, cats, chicken, cattle, pigs, and birds. Coronaviruses cause respiratory, gastrointestinal, and neurological disease. The most common coronaviruses in clinical practice are 229E, OC43, NL63, and HKU1, which typically cause common cold symptoms in immunocompetent individuals. SARS-CoV-2 is the third coronavirus that has caused severe disease in humans to spread globally in the past 2 decades.1 The first coronavirus that caused severe disease was severe acute respiratory syndrome (SARS), which was thought to originate in Foshan, China, and resulted in the 2002-2003 SARS-CoV pandemic.2 The second was the coronavirus-caused Middle East respiratory syndrome (MERS), which originated from the Arabian peninsula in 2012.3

 

SARS-CoV-2 has a diameter of 60 nm to 140 nm and distinctive spikes, ranging from 9 nm to 12 nm, giving the virions the appearance of a solar corona (Figure 2).4 Through genetic recombination and variation, coronaviruses can adapt to and infect new hosts. Bats are thought to be a natural reservoir for SARS-CoV-2, but it has been suggested that humans became infected with SARS-CoV-2 via an intermediate host, such as the pangolin.5,6

 

The Host Defense Against SARS-CoV-2

 

Early in infection, SARS-CoV-2 targets cells, such as nasal and bronchial epithelial cells and pneumocytes, through the viral structural spike (S) protein that binds to the angiotensin-converting enzyme 2 (ACE2) receptor7 (Figure 2). The type 2 transmembrane serine protease (TMPRSS2), present in the host cell, promotes viral uptake by cleaving ACE2 and activating the SARS-CoV-2 S protein, which mediates coronavirus entry into host cells.7 ACE2 and TMPRSS2 are expressed in host target cells, particularly alveolar epithelial type II cells.8,9 Similar to other respiratory viral diseases, such as influenza, profound lymphopenia may occur in individuals with COVID-19 when SARS-CoV-2 infects and kills T lymphocyte cells. In addition, the viral inflammatory response, consisting of both the innate and the adaptive immune response (comprising humoral and cell-mediated immunity), impairs lymphopoiesis and increases lymphocyte apoptosis. Although upregulation of ACE2 receptors from ACE inhibitor and angiotensin receptor blocker medications has been hypothesized to increase susceptibility to SARS-CoV-2 infection, large observational cohorts have not found an association between these medications and risk of infection or hospital mortality due to COVID-19.10,11 For example, in a study 4480 patients with COVID-19 from Denmark, previous treatment with ACE inhibitors or angiotensin receptor blockers was not associated with mortality.11

 

In later stages of infection, when viral replication accelerates, epithelial-endothelial barrier integrity is compromised. In addition to epithelial cells, SARS-CoV-2 infects pulmonary capillary endothelial cells, accentuating the inflammatory response and triggering an influx of monocytes and neutrophils. Autopsy studies have shown diffuse thickening of the alveolar wall with mononuclear cells and macrophages infiltrating airspaces in addition to endothelialitis.12 Interstitial mononuclear inflammatory infiltrates and edema develop and appear as ground-glass opacities on computed tomographic imaging. Pulmonary edema filling the alveolar spaces with hyaline membrane formation follows, compatible with early-phase acute respiratory distress syndrome (ARDS).12 Bradykinin-dependent lung angioedema may contribute to disease.13 Collectively, endothelial barrier disruption, dysfunctional alveolar-capillary oxygen transmission, and impaired oxygen diffusion capacity are characteristic features of COVID-19.

 

In severe COVID-19, fulminant activation of coagulation and consumption of clotting factors occur.14,15 A report from Wuhan, China, indicated that 71% of 183 individuals who died of COVID-19 met criteria for diffuse intravascular coagulation.14 Inflamed lung tissues and pulmonary endothelial cells may result in microthrombi formation and contribute to the high incidence of thrombotic complications, such as deep venous thrombosis, pulmonary embolism, and thrombotic arterial complications (eg, limb ischemia, ischemic stroke, myocardial infarction) in critically ill patients.16 The development of viral sepsis, defined as life-threatening organ dysfunction caused by a dysregulated host response to infection, may further contribute to multiorgan failure.

 

Transmission of SARS-CoV-2 Infection

 

Epidemiologic data suggest that droplets expelled during face-to-face exposure during talking, coughing, or sneezing is the most common mode of transmission (Box 1). Prolonged exposure to an infected person (being within 6 feet for at least 15 minutes) and briefer exposures to individuals who are symptomatic (eg, coughing) are associated with higher risk for transmission, while brief exposures to asymptomatic contacts are less likely to result in transmission.25 Contact surface spread (touching a surface with virus on it) is another possible mode of transmission. Transmission may also occur via aerosols (smaller droplets that remain suspended in air), but it is unclear if this is a significant source of infection in humans outside of a laboratory setting.26,27 The existence of aerosols in physiological states (eg, coughing) or the detection of nucleic acid in the air does not mean that small airborne particles are infectious.28 Maternal COVID-19 is currently believed to be associated with low risk for vertical transmission. In most reported series, the mothers’ infection with SARS-CoV-2 occurred in the third trimester of pregnancy, with no maternal deaths and a favorable clinical course in the neonates.2931

Box 1.

Transmission, Symptoms, and Complications of Coronavirus Disease 2019 (COVID-19)

  • Transmission17 of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) occurs primarily via respiratory droplets from face-to-face contact and, to a lesser degree, via contaminated surfaces. Aerosol spread may occur, but the role of aerosol spread in humans remains unclear. An estimated 48% to 62% of transmission may occur via presymptomatic carriers.

  • Common symptoms18 in hospitalized patients include fever (70%-90%), dry cough (60%-86%), shortness of breath (53%-80%), fatigue (38%), myalgias (15%-44%), nausea/vomiting or diarrhea (15%-39%), headache, weakness (25%), and rhinorrhea (7%). Anosmia or ageusia may be the sole presenting symptom in approximately 3% of individuals with COVID-19.

  • Common laboratory abnormalities19 among hospitalized patients include lymphopenia (83%), elevated inflammatory markers (eg, erythrocyte sedimentation rate, C-reactive protein, ferritin, tumor necrosis factor-α, IL-1, IL-6), and abnormal coagulation parameters (eg, prolonged prothrombin time, thrombocytopenia, elevated D-dimer [46% of patients], low fibrinogen).

  • Common radiographic findings of individuals with COVID-19 include bilateral, lower-lobe predominate infiltrates on chest radiographic imaging and bilateral, peripheral, lower-lobe ground-glass opacities and/or consolidation on chest computed tomographic imaging.

  • Common complications18,2024 among hospitalized patients with COVID-19 include pneumonia (75%); acute respiratory distress syndrome (15%); acute liver injury, characterized by elevations in aspartate transaminase, alanine transaminase, and bilirubin (19%); cardiac injury, including troponin elevation (7%-17%), acute heart failure, dysrhythmias, and myocarditis; prothrombotic coagulopathy resulting in venous and arterial thromboembolic events (10%-25%); acute kidney injury (9%); neurologic manifestations, including impaired consciousness (8%) and acute cerebrovascular disease (3%); and shock (6%).

  • Rare complications among critically ill patients with COVID-19 include cytokine storm and macrophage activation syndrome (ie, secondary hemophagocytic lymphohistiocytosis).

 

The clinical significance of SARS-CoV-2 transmission from inanimate surfaces is difficult to interpret without knowing the minimum dose of virus particles that can initiate infection. Viral load appears to persist at higher levels on impermeable surfaces, such as stainless steel and plastic, than permeable surfaces, such as cardboard.32 Virus has been identified on impermeable surfaces for up to 3 to 4 days after inoculation.32 Widespread viral contamination of hospital rooms has been documented.28 However, it is thought that the amount of virus detected on surfaces decays rapidly within 48 to 72 hours.32 Although the detection of virus on surfaces reinforces the potential for transmission via fomites (objects such as a doorknob, cutlery, or clothing that may be contaminated with SARS-CoV-2) and the need for adequate environmental hygiene, droplet spread via face-to-face contact remains the primary mode of transmission.

 

Viral load in the upper respiratory tract appears to peak around the time of symptom onset and viral shedding begins approximately 2 to 3 days prior to the onset of symptoms.33 Asymptomatic and presymptomatic carriers can transmit SARS-CoV-2.34,35 In Singapore, presymptomatic transmission has been described in clusters of patients with close contact (eg, through churchgoing or singing class) approximately 1 to 3 days before the source patient developed symptoms.34 Presymptomatic transmission is thought to be a major contributor to the spread of SARS-CoV-2. Modeling studies from China and Singapore estimated the percentage of infections transmitted from a presymptomatic individual as 48% to 62%.17 Pharyngeal shedding is high during the first week of infection at a time in which symptoms are still mild, which might explain the efficient transmission of SARS-CoV-2, because infected individuals can be infectious before they realize they are ill.36 Although studies have described rates of asymptomatic infection, ranging from 4% to 32%, it is unclear whether these reports represent truly asymptomatic infection by individuals who never develop symptoms, transmission by individuals with very mild symptoms, or transmission by individuals who are asymptomatic at the time of transmission but subsequently develop symptoms.3739 A systematic review on this topic suggested that true asymptomatic infection is probably uncommon.38

 

Although viral nucleic acid can be detectable in throat swabs for up to 6 weeks after the onset of illness, several studies suggest that viral cultures are generally negative for SARS-CoV-2 8 days after symptom onset.33,36,40 This is supported by epidemiological studies that have shown that transmission did not occur to contacts whose exposure to the index case started more than 5 days after the onset of symptoms in the index case.41 This suggests that individuals can be released from isolation based on clinical improvement. The Centers for Disease Control and Prevention recommend isolating for at least 10 days after symptom onset and 3 days after improvement of symptoms.42 However, there remains uncertainty about whether serial testing is required for specific subgroups, such as immunosuppressed patients or critically ill patients for whom symptom resolution may be delayed or older adults residing in short- or long-term care facilities.

 

Clinical Presentation

 

The mean (interquartile range) incubation period (the time from exposure to symptom onset) for COVID-19 is approximately 5 (2-7) days.43,44 Approximately 97.5% of individuals who develop symptoms will do so within 11.5 days of infection.43 The median (interquartile range) interval from symptom onset to hospital admission is 7 (3-9) days.45 The median age of hospitalized patients varies between 47 and 73 years, with most cohorts having a male preponderance of approximately 60%.44,46,47 Among patients hospitalized with COVID-19, 74% to 86% are aged at least 50 years.45,47

 

COVID-19 has various clinical manifestations (Box 1 and Box 2). In a study of 44 672 patients with COVID-19 in China, 81% of patients had mild manifestations, 14% had severe manifestations, and 5% had critical manifestations (defined by respiratory failure, septic shock, and/or multiple organ dysfunction).48 A study of 20 133 individuals hospitalized with COVID-19 in the UK reported that 17.1% were admitted to high-dependency or intensive care units (ICUs).47

Box 2.

Commonly Asked Questions About Coronavirus Disease 2019 (COVID-19)

  • How is severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) most commonly transmitted?

    • SARS-CoV-2 is most commonly spread via respiratory droplets (eg, from coughing, sneezing, shouting) during face-to-face exposure or by surface contamination.

  • What are the most common symptoms of COVID-19?

    • The 3 most common symptoms are fever, cough, and shortness of breath. Additional symptoms include weakness, fatigue, nausea, vomiting, diarrhea, changes to taste and smell.

  • How is the diagnosis made?

    • Diagnosis of COVID-19 is typically made by polymerase chain reaction testing of a nasopharyngeal swab. However, given the possibility of false-negative test results, clinical, laboratory, and imaging findings may also be used to make a presumptive diagnosis for individuals for whom there is a high index of clinical suspicion of infection.

  • What are current evidence-based treatments for individuals with COVID-19?

    • Supportive care, including supplemental oxygen, is the main treatment for most patients. Recent trials indicate that dexamethasone decreases mortality (subgroup analysis suggests benefit is limited to patients who require supplemental oxygen and who have symptoms for >7 d) and remdesivir improves time to recovery (subgroup analysis suggests benefit is limited to patients not receiving mechanical ventilation).

  • What percentage of people are asymptomatic carriers, and how important are they in transmitting the disease?

    • True asymptomatic infection is believed to be uncommon. The average time from exposure to symptoms onset is 5 days, and up to 62% of transmission may occur prior to the onset of symptoms.

  • Are masks effective at preventing spread?

    • Yes. Face masks reduce the spread of viral respiratory infection. N95 respirators and surgical masks both provide substantial protection (compared with no mask), and surgical masks provide greater protection than cloth masks. However, physical distancing is also associated with substantial reduction of viral transmission, with greater distances providing greater protection. Additional measures such as hand and environmental disinfection are also important.

 

Although only approximately 25% of infected patients have comorbidities, 60% to 90% of hospitalized infected patients have comorbidities.4549 The most common comorbidities in hospitalized patients include hypertension (present in 48%-57% of patients), diabetes (17%-34%), cardiovascular disease (21%-28%), chronic pulmonary disease (4%-10%), chronic kidney disease (3%-13%), malignancy (6%-8%), and chronic liver disease (<5%).45,46,49

 

The most common symptoms in hospitalized patients are fever (up to 90% of patients), dry cough (60%-86%), shortness of breath (53%-80%), fatigue (38%), nausea/vomiting or diarrhea (15%-39%), and myalgia (15%-44%).18,4447,49,50 Patients can also present with nonclassical symptoms, such as isolated gastrointestinal symptoms.18 Olfactory and/or gustatory dysfunctions have been reported in 64% to 80% of patients.5153 Anosmia or ageusia may be the sole presenting symptom in approximately 3% of patients.53

 

Complications of COVID-19 include impaired function of the heart, brain, lung, liver, kidney, and coagulation system. COVID-19 can lead to myocarditis, cardiomyopathy, ventricular arrhythmias, and hemodynamic instability.20,54 Acute cerebrovascular disease and encephalitis are observed with severe illness (in up to 8% of patients).21,52 Venous and arterial thromboembolic events occur in 10% to 25% in hospitalized patients with COVID-19.19,22 In the ICU, venous and arterial thromboembolic events may occur in up to 31% to 59% of patients with COVID-19.16,22

 

Approximately 17% to 35% of hospitalized patients with COVID-19 are treated in an ICU, most commonly due to hypoxemic respiratory failure. Among patients in the ICU with COVID-19, 29% to 91% require invasive mechanical ventilation.47,49,55,56 In addition to respiratory failure, hospitalized patients may develop acute kidney injury (9%), liver dysfunction (19%), bleeding and coagulation dysfunction (10%-25%), and septic shock (6%).18,19,23,49,56

 

Approximately 2% to 5% of individuals with laboratory-confirmed COVID-19 are younger than 18 years, with a median age of 11 years. Children with COVID-19 have milder symptoms that are predominantly limited to the upper respiratory tract, and rarely require hospitalization. It is unclear why children are less susceptible to COVID-19. Potential explanations include that children have less robust immune responses (ie, no cytokine storm), partial immunity from other viral exposures, and lower rates of exposure to SARS-CoV-2. Although most pediatric cases are mild, a small percentage (<7%) of children admitted to the hospital for COVID-19 develop severe disease requiring mechanical ventilation.57 A rare multisystem inflammatory syndrome similar to Kawasaki disease has recently been described in children in Europe and North America with SARS-CoV-2 infection.58,59 This multisystem inflammatory syndrome in children is uncommon (2 in 100 000 persons aged <21 years).60

 

Assessment and Diagnosis

 

Diagnosis of COVID-19 is typically made using polymerase chain reaction testing via nasal swab (Box 2). However, because of false-negative test result rates of SARS-CoV-2 PCR testing of nasal swabs, clinical, laboratory, and imaging findings may also be used to make a presumptive diagnosis.

 

Diagnostic Testing: Polymerase Chain Reaction and Serology

 

Reverse transcription polymerase chain reaction–based SARS-CoV-2 RNA detection from respiratory samples (eg, nasopharynx) is the standard for diagnosis. However, the sensitivity of testing varies with timing of testing relative to exposure. One modeling study estimated sensitivity at 33% 4 days after exposure, 62% on the day of symptom onset, and 80% 3 days after symptom onset.6163 Factors contributing to false-negative test results include the adequacy of the specimen collection technique, time from exposure, and specimen source. Lower respiratory samples, such as bronchoalveolar lavage fluid, are more sensitive than upper respiratory samples. Among 1070 specimens collected from 205 patients with COVID-19 in China, bronchoalveolar lavage fluid specimens had the highest positive rates of SARS-CoV-2 PCR testing results (93%), followed by sputum (72%), nasal swabs (63%), and pharyngeal swabs (32%).61 SARS-CoV-2 can also be detected in feces, but not in urine.61 Saliva may be an alternative specimen source that requires less personal protective equipment and fewer swabs, but requires further validation.64

 

Several serological tests can also aid in the diagnosis and measurement of responses to novel vaccines.62,65,66 However, the presence of antibodies may not confer immunity because not all antibodies produced in response to infection are neutralizing. Whether and how frequently second infections with SARS-CoV-2 occur remain unknown. Whether presence of antibody changes susceptibility to subsequent infection or how long antibody protection lasts are unknown. IgM antibodies are detectable within 5 days of infection, with higher IgM levels during weeks 2 to 3 of illness, while an IgG response is first seen approximately 14 days after symptom onset.62,65 Higher antibody titers occur with more severe disease.66 Available serological assays include point-of-care assays and high throughput enzyme immunoassays. However, test performance, accuracy, and validity are variable.67

 

Laboratory Findings

 

A systematic review of 19 studies of 2874 patients who were mostly from China (mean age, 52 years), of whom 88% were hospitalized, reported the typical range of laboratory abnormalities seen in COVID-19, including elevated serum C-reactive protein (increased in >60% of patients), lactate dehydrogenase (increased in approximately 50%-60%), alanine aminotransferase (elevated in approximately 25%), and aspartate aminotransferase (approximately 33%).24 Approximately 75% of patients had low albumin.24 The most common hematological abnormality is lymphopenia (absolute lymphocyte count <1.0 × 109/L), which is present in up to 83% of hospitalized patients with COVID-19.44,50 In conjunction with coagulopathy, modest prolongation of prothrombin times (prolonged in >5% of patients), mild thrombocytopenia (present in approximately 30% of patients) and elevated D-dimer values (present in 43%-60% of patients) are common.14,15,19,44,68 However, most of these laboratory characteristics are nonspecific and are common in pneumonia. More severe laboratory abnormalities have been associated with more severe infection.44,50,69 D-dimer and, to a lesser extent, lymphopenia seem to have the largest prognostic associations.69

 

Imaging

 

The characteristic chest computed tomographic imaging abnormalities for COVID-19 are diffuse, peripheral ground-glass opacities (Figure 3).70 Ground-glass opacities have ill-defined margins, air bronchograms, smooth or irregular interlobular or septal thickening, and thickening of the adjacent pleura.70 Early in the disease, chest computed tomographic imaging findings in approximately 15% of individuals and chest radiograph findings in approximately 40% of individuals can be normal.44 Rapid evolution of abnormalities can occur in the first 2 weeks after symptom onset, after which they subside gradually.70,71

 

Chest computed tomographic imaging findings are nonspecific and overlap with other infections, so the diagnostic value of chest computed tomographic imaging for COVID-19 is limited. Some patients admitted to the hospital with polymerase chain reaction testing–confirmed SARS-CoV-2 infection have normal computed tomographic imaging findings, while abnormal chest computed tomographic imaging findings compatible with COVID-19 occur days before detection of SARS-CoV-2 RNA in other patients.70,71

 

Treatment

 

Supportive Care and Respiratory Support

 

Currently, best practices for supportive management of acute hypoxic respiratory failure and ARDS should be followed.7274 Evidence-based guideline initiatives have been established by many countries and professional societies,7274 including guidelines that are updated regularly by the National Institutes of Health.74

 

More than 75% of patients hospitalized with COVID-19 require supplemental oxygen therapy. For patients who are unresponsive to conventional oxygen therapy, heated high-flow nasal canula oxygen may be administered.72 For patients requiring invasive mechanical ventilation, lung-protective ventilation with low tidal volumes (4-8 mL/kg, predicted body weight) and plateau pressure less than 30 mg Hg is recommended.72 Additionally, prone positioning, a higher positive end-expiratory pressure strategy, and short-term neuromuscular blockade with cisatracurium or other muscle relaxants may facilitate oxygenation. Although some patients with COVID-19–related respiratory failure have high lung compliance,75 they are still likely to benefit from lung-protective ventilation.76 Cohorts of patients with ARDS have displayed similar heterogeneity in lung compliance, and even patients with greater compliance have shown benefit from lower tidal volume strategies.76

 

The threshold for intubation in COVID-19–related respiratory failure is controversial, because many patients have normal work of breathing but severe hypoxemia.77 “Earlier” intubation allows time for a more controlled intubation process, which is important given the logistical challenges of moving patients to an airborne isolation room and donning personal protective equipment prior to intubation. However, hypoxemia in the absence of respiratory distress is well tolerated, and patients may do well without mechanical ventilation. Earlier intubation thresholds may result in treating some patients with mechanical ventilation unnecessarily and exposing them to additional complications. Currently, insufficient evidence exists to make recommendations regarding earlier vs later intubation.

 

In observational studies, approximately 8% of hospitalized patients with COVID-19 experience a bacterial or fungal co-infection, but up to 72% are treated with broad-spectrum antibiotics.78 Awaiting further data, it may be prudent to withhold antibacterial drugs in patients with COVID-19 and reserve them for those who present with radiological findings and/or inflammatory markers compatible with co-infection or who are immunocompromised and/or critically ill.72

 

Targeting the Virus and the Host Response

 

The following classes of drugs are being evaluated or developed for the management of COVID-19: antivirals (eg, remdesivir, favipiravir), antibodies (eg, convalescent plasma, hyperimmune immunoglobulins), anti-inflammatory agents (dexamethasone, statins), targeted immunomodulatory therapies (eg, tocilizumab, sarilumab, anakinra, ruxolitinib), anticoagulants (eg, heparin), and antifibrotics (eg, tyrosine kinase inhibitors). It is likely that different treatment modalities might have different efficacies at different stages of illness and in different manifestations of disease. Viral inhibition would be expected to be most effective early in infection, while, in hospitalized patients, immunomodulatory agents may be useful to prevent disease progression and anticoagulants may be useful to prevent thromboembolic complications.

 

More than 200 trials of chloroquine/hydroxychloroquine, compounds that inhibit viral entry and endocytosis of SARS-CoV-2 in vitro and may have beneficial immunomodulatory effects in vivo,79,80 have been initiated, but early data from clinical trials in hospitalized patients with COVID-19 have not demonstrated clear benefit.8183 A clinical trial of 150 patients in China admitted to the hospital for mild to moderate COVID-19 did not find an effect on negative conversion of SARS-CoV-2 by 28 days (the main outcome measure) when compared with standard of care alone.83 Two retrospective studies found no effect of hydroxychloroquine on risk of intubation or mortality among patients hospitalized for COVID-19.84,85 One of these retrospective multicenter cohort studies compared in-hospital mortality between those treated with hydroxychloroquine plus azithromycin (735 patients), hydroxychloroquine alone (271 patients), azithromycin alone (211 patients), and neither drug (221 patients), but reported no differences across the groups.84 Adverse effects are common, most notably QT prolongation with an increased risk of cardiac complications in an already vulnerable population.82,84 These findings do not support off-label use of (hydroxy)chloroquine either with or without the coadministration of azithromycin. Randomized clinical trials are ongoing and should provide more guidance.

 

Most antiviral drugs undergoing clinical testing in patients with COVID-19 are repurposed antiviral agents originally developed against influenza, HIV, Ebola, or SARS/MERS.79,86 Use of the protease inhibitor lopinavir-ritonavir, which disrupts viral replication in vitro, did not show benefit when compared with standard care in a randomized, controlled, open-label trial of 199 hospitalized adult patients with severe COVID-19.87 Among the RNA-dependent RNA polymerase inhibitors, which halt SARS-CoV-2 replication, being evaluated, including ribavirin, favipiravir, and remdesivir, the latter seems to be the most promising.79,88 The first preliminary results of a double-blind, randomized, placebo-controlled trial of 1063 adults hospitalized with COVID-19 and evidence of lower respiratory tract involvement who were randomly assigned to receive intravenous remdesivir or placebo for up to 10 days demonstrated that patients randomized to receive remdesivir had a shorter time to recovery than patients in the placebo group (11 vs 15 days).88 A separate randomized, open-label trial among 397 hospitalized patients with COVID-19 who did not require mechanical ventilation reported that 5 days of treatment with remdesivir was not different than 10 days in terms of clinical status on day 14.89 The effect of remdesivir on survival remains unknown.

 

Treatment with plasma obtained from patients who have recovered from viral infections was first reported during the 1918 flu pandemic. A first report of 5 critically ill patients with COVID-19 treated with convalescent plasma containing neutralizing antibody showed improvement in clinical status among all participants, defined as a combination of changes of body temperature, Sequential Organ Failure Assessment score, partial pressure of oxygen/fraction of inspired oxygen, viral load, serum antibody titer, routine blood biochemical index, ARDS, and ventilatory and extracorporeal membrane oxygenation supports before and after convalescent plasma transfusion status.90 However, a subsequent multicenter, open-label, randomized clinical trial of 103 patients in China with severe COVID-19 found no statistical difference in time to clinical improvement within 28 days among patients randomized to receive convalescent plasma vs standard treatment alone (51.9% vs 43.1%).91 However, the trial was stopped early because of slowing enrollment, which limited the power to detect a clinically important difference. Alternative approaches being studied include the use of convalescent plasma-derived hyperimmune globulin and monoclonal antibodies targeting SARS-CoV-2.92,93

 

Alternative therapeutic strategies consist of modulating the inflammatory response in patients with COVID-19. Monoclonal antibodies directed against key inflammatory mediators, such as interferon gamma, interleukin 1, interleukin 6, and complement factor 5a, all target the overwhelming inflammatory response following SARS-CoV-2 infection with the goal of preventing organ damage.79,86,94 Of these, the interleukin 6 inhibitors tocilizumab and sarilumab are best studied, with more than a dozen randomized clinical trials underway.94 Tyrosine kinase inhibitors, such as imatinib, are studied for their potential to prevent pulmonary vascular leakage in individuals with COVID-19.

 

Studies of corticosteroids for viral pneumonia and ARDS have yielded mixed results.72,73 However, the Randomized Evaluation of COVID-19 Therapy (RECOVERY) trial, which randomized 2104 patients with COVID-19 to receive 6 mg daily of dexamethasone for up to 10 days and 4321 to receive usual care, found that dexamethasone reduced 28-day all-cause mortality (21.6% vs 24.6%; age-adjusted rate ratio, 0.83 [95% CI, 0.74-0.92]; P < .001).95 The benefit was greatest in patients with symptoms for more than 7 days and patients who required mechanical ventilation. By contrast, there was no benefit (and possibility for harm) among patients with shorter symptom duration and no supplemental oxygen requirement. A retrospective cohort study of 201 patients in Wuhan, China, with confirmed COVID-19 pneumonia and ARDS reported that treatment with methylprednisolone was associated with reduced risk of death (hazard ratio, 0.38 [95% CI, 0.20-0.72]).69

 

Thromboembolic prophylaxis with subcutaneous low molecular weight heparin is recommended for all hospitalized patients with COVID-19.15,19 Studies are ongoing to assess whether certain patients (ie, those with elevated D-dimer) benefit from therapeutic anticoagulation.

 

Disparities

 

A disproportionate percentage of COVID-19 hospitalizations and deaths occurs in lower-income and minority populations.45,96,97 In a report by the Centers for Disease Control and Prevention of 580 hospitalized patients for whom race data were available, 33% were Black and 45% were White, while 18% of residents in the surrounding community were Black and 59% were White.45 The disproportionate prevalence of COVID-19 among Black patients was separately reported in a retrospective cohort study of 3626 patients with COVID-19 from Louisiana, in which 77% of patients hospitalized with COVID-19 and 71% of patients who died of COVID-19 were Black, but Black individuals comprised only 31% of the area population.97,98 This disproportionate burden may be a reflection of disparities in housing, transportation, employment, and health. Minority populations are more likely to live in densely populated communities or housing, depend on public transportation, or work in jobs for which telework was not possible (eg, bus driver, food service worker). Black individuals also have a higher prevalence of chronic health conditions than White individuals.98,99

 

Prognosis

 

Overall hospital mortality from COVID-19 is approximately 15% to 20%, but up to 40% among patients requiring ICU admission. However, mortality rates vary across cohorts, reflecting differences in the completeness of testing and case identification, variable thresholds for hospitalization, and differences in outcomes. Hospital mortality ranges from less than 5% among patients younger than 40 years to 35% for patients aged 70 to 79 years and greater than 60% for patients aged 80 to 89 years.46 Estimated overall death rates by age group per 1000 confirmed cases are provided in the Table. Because not all people who die during the pandemic are tested for COVID-19, actual numbers of deaths from COVID-19 are higher than reported numbers.

 

Although long-term outcomes from COVID-19 are currently unknown, patients with severe illness are likely to suffer substantial sequelae. Survival from sepsis is associated with increased risk for mortality for at least 2 years, new physical disability, new cognitive impairment, and increased vulnerability to recurrent infection and further health deterioration. Similar sequalae are likely to be seen in survivors of severe COVID-19.100

 

Prevention and Vaccine Development

 

COVID-19 is a potentially preventable disease. The relationship between the intensity of public health action and the control of transmission is clear from the epidemiology of infection around the world.25,101,102 However, because most countries have implemented multiple infection control measures, it is difficult to determine the relative benefit of each.103,104 This question is increasingly important because continued interventions will be required until effective vaccines or treatments become available. In general, these interventions can be divided into those consisting of personal actions (eg, physical distancing, personal hygiene, and use of protective equipment), case and contact identification (eg, test-trace-track-isolate, reactive school or workplace closure), regulatory actions (eg, governmental limits on sizes of gatherings or business capacity; stay-at-home orders; proactive school, workplace, and public transport closure or restriction; cordon sanitaire or internal border closures), and international border measures (eg, border closure or enforced quarantine). A key priority is to identify the combination of measures that minimizes societal and economic disruption while adequately controlling infection. Optimal measures may vary between countries based on resource limitations, geography (eg, island nations and international border measures), population, and political factors (eg, health literacy, trust in government, cultural and linguistic diversity).

 

The evidence underlying these public health interventions has not changed since the 1918 flu pandemic.105 Mathematical modeling studies and empirical evidence support that public health interventions, including home quarantine after infection, restricting mass gatherings, travel restrictions, and social distancing, are associated with reduced rates of transmission.101,102,106 Risk of resurgence follows when these interventions are lifted.

 

A human vaccine is currently not available for SARS-CoV-2, but approximately 120 candidates are under development. Approaches include the use of nucleic acids (DNA or RNA), inactivated or live attenuated virus, viral vectors, and recombinant proteins or virus particles.107,108 Challenges to developing an effective vaccine consist of technical barriers (eg, whether S or receptor-binding domain proteins provoke more protective antibodies, prior exposure to adenovirus serotype 5 [which impairs immunogenicity in the viral vector vaccine], need for adjuvant), feasibility of large-scale production and regulation (eg, ensuring safety and effectiveness), and legal barriers (eg, technology transfer and licensure agreements). The SARS-CoV-2 S protein appears to be a promising immunogen for protection, but whether targeting the full-length protein or only the receptor-binding domain is sufficient to prevent transmission remains unclear.108 Other considerations include the potential duration of immunity and thus the number of vaccine doses needed to confer immunity.62,108 More than a dozen candidate SARS-CoV-2 vaccines are currently being tested in phase 1-3 trials.

 

Other approaches to prevention are likely to emerge in the coming months, including monoclonal antibodies, hyperimmune globulin, and convalscent titer. If proved effective, these approaches could be used in high-risk individuals, including health care workers, other essential workers, and older adults (particularly those in nursing homes or long-term care facilities).

 

Limitations

 

This review has several limitations. First, information regarding SARS CoV-2 is limited. Second, information provided here is based on current evidence, but may be modified as more information becomes available. Third, few randomized trials have been published to guide management of COVID-19.

 

Conclusions

 

As of July 1, 2020, more than 10 million people worldwide had been infected with SARS-CoV-2. Many aspects of transmission, infection, and treatment remain unclear. Advances in prevention and effective management of COVID-19 will require basic and clinical investigation and public health and clinical interventions.

 

Section Editors: Edward Livingston, MD, Deputy Editor, and Mary McGrae McDermott, MD, Deputy Editor.

 

Submissions: We encourage authors to submit papers for consideration as a Review. Please contact Edward Livingston, MD, at Edward.livingston@jamanetwork.org or Mary McGrae McDermott, MD, at mdm608@northwestern.edu.

 

Back to top

Article Information

Accepted for Publication: June 30, 2020.

Corresponding Author: W. Joost Wiersinga, MD, PhD, Division of Infectious Diseases, Department of Medicine, Amsterdam UMC, location AMC, Meibergdreef 9, 1105 AZ Amsterdam, the Netherlands (w.j.wiersinga@amsterdamumc.nl).

Published Online: July 10, 2020. doi:10.1001/jama.2020.12839

Conflict of Interest Disclosures: Dr Wiersinga is supported by the Netherlands Organisation of Scientific Research outside the submitted work. Dr Prescott reported receiving grants from the US Agency for Healthcare Research and Quality (HCP by R01 HS026725), the National Institutes of Health/National Institute of General Medical Sciences, and the US Department of Veterans Affairs outside the submitted work, being the sepsis physician lead for the Hospital Medicine Safety Continuous Quality Initiative funded by BlueCross/BlueShield of Michigan, and serving on the steering committee for MI-COVID-19, a Michigan statewide registry to improve care for patients with COVID-19 in Michigan. Dr Rhodes reported being the co-chair of the Surviving Sepsis Campaign. Dr Cheng reported being a member of Australian government advisory committees, including those involved in COVID-19. No other disclosures were reported.

Disclaimer: This article does not represent the views of the US Department of Veterans Affairs or the US government. This material is the result of work supported with resources and use of facilities at the Ann Arbor VA Medical Center. The opinions in this article do not necessarily represent those of the Australian government or advisory committees.

 

References

1.

Zhu  N, Zhang  D, Wang  W,  et al; China Novel Coronavirus Investigating and Research Team.  A novel coronavirus from patients with pneumonia in China, 2019.   N Engl J Med. 2020;382(8):727-733. doi:10.1056/NEJMoa2001017PubMedGoogle ScholarCrossref

2.

Zhong  NS, Zheng  BJ, Li  YM,  et al.  Epidemiology and cause of severe acute respiratory syndrome (SARS) in Guangdong, People’s Republic of China, in February, 2003.   Lancet. 2003;362(9393):1353-1358. doi:10.1016/S0140-6736(03)14630-2PubMedGoogle ScholarCrossref

3.

Zaki  AM, van Boheemen  S, Bestebroer  TM, Osterhaus  AD, Fouchier  RA.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia.   N Engl J Med. 2012;367(19):1814-1820. doi:10.1056/NEJMoa1211721PubMedGoogle ScholarCrossref

4.

Goldsmith  CS, Tatti  KM, Ksiazek  TG,  et al.  Ultrastructural characterization of SARS coronavirus.   Emerg Infect Dis. 2004;10(2):320-326. doi:10.3201/eid1002.030913PubMedGoogle ScholarCrossref

5.

Lu  R, Zhao  X, Li  J,  et al.  Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding.   Lancet. 2020;395(10224):565-574. doi:10.1016/S0140-6736(20)30251-8PubMedGoogle ScholarCrossref

6.

Lam  TT, Jia  N, Zhang  YW,  et al.  Identifying SARS-CoV-2-related coronaviruses in Malayan pangolins.   Nature. Published online March 26, 2020. doi:10.1038/s41586-020-2169-0PubMedGoogle Scholar

7.

Hoffmann  M, Kleine-Weber  H, Schroeder  S,  et al.  SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor.   Cell. 2020;181(2):271-280. doi:10.1016/j.cell.2020.02.052PubMedGoogle Scholar

8.

Sungnak  W, Huang  N, Bécavin  C,  et al; HCA Lung Biological Network.  SARS-CoV-2 entry factors are highly expressed in nasal epithelial cells together with innate immune genes.   Nat Med. 2020;26(5):681-687. doi:10.1038/s41591-020-0868-6PubMedGoogle ScholarCrossref

9.

Zou  X, Chen  K, Zou  J, Han  P, Hao  J, Han  Z.  Single-cell RNA-seq data analysis on the receptor ACE2 expression reveals the potential risk of different human organs vulnerable to 2019-nCoV infection.   Front Med. 2020;14(2):185-192. doi:10.1007/s11684-020-0754-0PubMedGoogle ScholarCrossref

10.

Mancia  G, Rea  F, Ludergnani  M, Apolone  G, Corrao  G.  Renin-angiotensin-aldosterone system blockers and the risk of COVID-19.   N Engl J Med. 2020;382(25):2431-2440. doi:10.1056/NEJMoa2006923PubMedGoogle ScholarCrossref

11.

Fosbøl  EL, Butt  JH, Østergaard  L,  et al.  Association of angiotensin-converting enzyme inhibitor or angiotensin receptor blocker use with COVID-19 diagnosis and mortality.   JAMA. Published online June 19, 2020. doi:10.1001/jama.2020.11301
ArticlePubMedGoogle Scholar

12.

Xu  Z, Shi  L, Wang  Y,  et al.  Pathological findings of COVID-19 associated with acute respiratory distress syndrome.   Lancet Respir Med. 2020;8(4):420-422. doi:10.1016/S2213-2600(20)30076-XPubMedGoogle ScholarCrossref

13.

van de Veerdonk  FL, Netea  MG, van Deuren  M,  et al.  Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome.   Elife. Published online April 27, 2020. doi:10.7554/eLife.57555PubMedGoogle Scholar

14.

Tang  N, Li  D, Wang  X, Sun  Z.  Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia.   J Thromb Haemost. 2020;18(4):844-847. doi:10.1111/jth.14768PubMedGoogle ScholarCrossref

15.

Thachil  J, Tang  N, Gando  S,  et al.  ISTH interim guidance on recognition and management of coagulopathy in COVID-19.   J Thromb Haemost. 2020;18(5):1023-1026. doi:10.1111/jth.14810PubMedGoogle ScholarCrossref

16.

Klok  FA, Kruip  MJHA, van der Meer  NJM,  et al.  Incidence of thrombotic complications in critically ill ICU patients with COVID-19.   Thromb Res. 2020;191:145-147. doi:10.1016/j.thromres.2020.04.013PubMedGoogle ScholarCrossref

17.

Ganyani  T, Kremer  C, Chen  D,  et al.  Estimating the generation interval for coronavirus disease (COVID-19) based on symptom onset data, March 2020.   Euro Surveill. 2020;25(17). doi:10.2807/1560-7917.ES.2020.25.17.2000257PubMedGoogle Scholar

18.

Mao  R, Qiu  Y, He  JS,  et al.  Manifestations and prognosis of gastrointestinal and liver involvement in patients with COVID-19: a systematic review and meta-analysis.   Lancet Gastroenterol Hepatol. 2020;5(7):667-678. doi:10.1016/S2468-1253(20)30126-6PubMedGoogle ScholarCrossref

19.

Levi  M, Thachil  J, Iba  T, Levy  JH.  Coagulation abnormalities and thrombosis in patients with COVID-19.   Lancet Haematol. 2020;7(6):e438-e440. doi:10.1016/S2352-3026(20)30145-9PubMedGoogle ScholarCrossref

20.

Long  B, Brady  WJ, Koyfman  A, Gottlieb  M.  Cardiovascular complications in COVID-19.   Am J Emerg Med. Published online April 18, 2020. doi:10.1016/j.ajem.2020.04.048PubMedGoogle Scholar

21.

Mao  L, Jin  H, Wang  M,  et al.  Neurologic manifestations of hospitalized patients with coronavirus disease 2019 in Wuhan, China.   JAMA Neurol. 2020;77(6):1-9. doi:10.1001/jamaneurol.2020.1127
ArticlePubMedGoogle ScholarCrossref

22.

Middeldorp  S, Coppens  M, van Haaps  TF,  et al.  Incidence of venous thromboembolism in hospitalized patients with COVID-19.   J Thromb Haemost. Published online May 5, 2020. doi:10.1111/jth.14888PubMedGoogle Scholar

23.

Chen  YT, Shao  SC, Hsu  CK, Wu  IW, Hung  MJ, Chen  YC.  Incidence of acute kidney injury in COVID-19 infection: a systematic review and meta-analysis.   Crit Care. 2020;24(1):346. doi:10.1186/s13054-020-03009-yPubMedGoogle ScholarCrossref

24.

Rodriguez-Morales  AJ, Cardona-Ospina  JA, Gutiérrez-Ocampo  E,  et al; Latin American Network of Coronavirus Disease 2019-COVID-19 Research (LANCOVID-19).  Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis.   Travel Med Infect Dis. 2020;34:101623. doi:10.1016/j.tmaid.2020.101623PubMedGoogle Scholar

25.

Chu  DK, Akl  EA, Duda  S,  et al; COVID-19 Systematic Urgent Review Group Effort (SURGE) study authors.  Physical distancing, face masks, and eye protection to prevent person-to-person transmission of SARS-CoV-2 and COVID-19: a systematic review and meta-analysis.   Lancet. 2020;395(10242):1973-1987. doi:10.1016/S0140-6736(20)31142-9PubMedGoogle ScholarCrossref

26.

Bourouiba  L.  Turbulent gas clouds and respiratory pathogen emissions: potential implications for reducing transmission of COVID-19.   JAMA. Published online March 26, 2020. doi:10.1001/jama.2020.4756
ArticlePubMedGoogle Scholar

27.

Lewis  D.  Is the coronavirus airborne? experts can’t agree.   Nature. 2020;580(7802):175. doi:10.1038/d41586-020-00974-wPubMedGoogle ScholarCrossref

28.

Chia  PY, Coleman  KK, Tan  YK,  et al; Singapore 2019 Novel Coronavirus Outbreak Research Team.  Detection of air and surface contamination by SARS-CoV-2 in hospital rooms of infected patients.   Nat Commun. 2020;11(1):2800. doi:10.1038/s41467-020-16670-2PubMedGoogle ScholarCrossref

29.

Dashraath  P, Wong  JLJ, Lim  MXK,  et al.  Coronavirus disease 2019 (COVID-19) pandemic and pregnancy.   Am J Obstet Gynecol. 2020;222(6):521-531. doi:10.1016/j.ajog.2020.03.021PubMedGoogle ScholarCrossref

30.

Chen  H, Guo  J, Wang  C,  et al.  Clinical characteristics and intrauterine vertical transmission potential of COVID-19 infection in nine pregnant women: a retrospective review of medical records.   Lancet. 2020;395(10226):809-815. doi:10.1016/S0140-6736(20)30360-3PubMedGoogle ScholarCrossref

31.

Zeng  L, Xia  S, Yuan  W,  et al.  Neonatal early-onset infection with SARS-CoV-2 in 33 neonates born to mothers with COVID-19 in Wuhan, China.   JAMA Pediatr. Published online March 26, 2020. doi:10.1001/jamapediatrics.2020.0878
ArticlePubMedGoogle Scholar

32.

van Doremalen  N, Bushmaker  T, Morris  DH,  et al.  Aerosol and surface stability of SARS-CoV-2 as compared with SARS-CoV-1.   N Engl J Med. 2020;382(16):1564-1567. doi:10.1056/NEJMc2004973PubMedGoogle ScholarCrossref

33.

He  X, Lau  EHY, Wu  P,  et al.  Temporal dynamics in viral shedding and transmissibility of COVID-19.   Nat Med. 2020;26(5):672-675. doi:10.1038/s41591-020-0869-5PubMedGoogle ScholarCrossref

34.

Wei  WE, Li  Z, Chiew  CJ, Yong  SE, Toh  MP, Lee  VJ.  Presymptomatic transmission of SARS-CoV-2—Singapore, January 23-March 16, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(14):411-415. doi:10.15585/mmwr.mm6914e1PubMedGoogle ScholarCrossref

35.

Bai  Y, Yao  L, Wei  T,  et al.  Presumed asymptomatic carrier transmission of COVID-19.   JAMA. 2020;323(14):1406-1407. doi:10.1001/jama.2020.2565
ArticlePubMedGoogle ScholarCrossref

36.

Wölfel  R, Corman  VM, Guggemos  W,  et al.  Virological assessment of hospitalized patients with COVID-2019.   Nature. 2020;581(7809):465-469. doi:10.1038/s41586-020-2196-xPubMedGoogle ScholarCrossref

37.

Park  SY, Kim  YM, Yi  S,  et al.  Coronavirus disease outbreak in call center, South Korea.   Emerg Infect Dis. 2020;26(8). doi:10.3201/eid2608.201274PubMedGoogle Scholar

38.

Byambasuren  O, Cardona  M, Bell  K, Clark  J, McLaws  M, Glasziou  P. Estimating the extent of asymptomatic COVID-19 and its potential for community transmission: systematic review and meta-analysis. MedRxiv. Preprint posted June 4, 2020. doi:10.1101/2020.05.10.20097543

39.

Tabata  S, Imai  K, Kawano  S,  et al.  Clinical characteristics of COVID-19 in 104 people with SARS-CoV-2 infection on the Diamond Princess cruise ship: a retrospective analysis.   Lancet Infect Dis. Published online June 12, 2020. doi:10.1016/S1473-3099(20)30482-5PubMedGoogle Scholar

40.

Sun  J, Xiao  J, Sun  R,  et al.  Prolonged persistence of SARS-CoV-2 RNA in body fluids.   Emerg Infect Dis. Published online May 8, 2020. doi:10.3201/eid2608.201097PubMedGoogle Scholar

41.

Cheng  HY, Jian  SW, Liu  DP,  et al.  Contact tracing assessment of COVID-19 transmission dynamics in Taiwan and risk at different exposure periods before and after symptom onset.   JAMA Intern Med. Published online May 1, 2020. doi:10.1001/jamainternmed.2020.2020
ArticlePubMedGoogle Scholar

42.

Symptom-based strategy to discontinue isolation for persons with COVID-19. Centers for Disease Control and Prevention website. Updated May 3, 2020. Accessed July 6, 2020. https://www.cdc.gov/coronavirus/2019-ncov/community/strategy-discontinue-isolation.html

43.

Lauer  SA, Grantz  KH, Bi  Q,  et al.  The incubation period of coronavirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application.   Ann Intern Med. 2020;172(9):577-582. doi:10.7326/M20-0504PubMedGoogle ScholarCrossref

44.

Guan  WJ, Ni  ZY, Hu  Y,  et al; China Medical Treatment Expert Group for Covid-19.  Clinical characteristics of coronavirus disease 2019 in China.   N Engl J Med. 2020;382(18):1708-1720. doi:10.1056/NEJMoa2002032PubMedGoogle ScholarCrossref

45.

Garg  S, Kim  L, Whitaker  M,  et al.  Hospitalization rates and characteristics of patients hospitalized with laboratory-confirmed coronavirus disease 2019—COVID-NET, 14 States, March 1-30, 2020.   MMWR Morb Mortal Wkly Rep. 2020;69(15):458-464. doi:10.15585/mmwr.mm6915e3PubMedGoogle ScholarCrossref

46.

Richardson  S, Hirsch  JS, Narasimhan  M,  et al; the Northwell COVID-19 Research Consortium.  Presenting characteristics, comorbidities, and outcomes among 5700 patients hospitalized with COVID-19 in the New York City area.   JAMA. 2020;323(20):2052-2059. doi:10.1001/jama.2020.6775
ArticlePubMedGoogle ScholarCrossref

47.

Docherty  AB, Harrison  EM, Green  CA,  et al; ISARIC4C investigators.  Features of 20 133 UK patients in hospital with COVID-19 using the ISARIC WHO Clinical Characterisation Protocol: prospective observational cohort study.   BMJ. 2020;369:m1985. doi:10.1136/bmj.m1985PubMedGoogle ScholarCrossref

48.

 The epidemiological characteristics of an outbreak of 2019 novel coronavirus diseases (COVID-19)—China, 2020.   China CDC Weekly. 2020;2:10.Google Scholar

49.

Grasselli  G, Zangrillo  A, Zanella  A,  et al; COVID-19 Lombardy ICU Network.  Baseline characteristics and outcomes of 1591 patients infected with SARS-CoV-2 admitted to ICUs of the Lombardy Region, Italy.   JAMA. 2020;323(16):1574-1581. doi:10.1001/jama.2020.5394
ArticlePubMedGoogle ScholarCrossref

50.

Huang  C, Wang  Y, Li  X,  et al.  Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China.   Lancet. 2020;395(10223):497-506. doi:10.1016/S0140-6736(20)30183-5PubMedGoogle ScholarCrossref

51.

Lechien  JR, Chiesa-Estomba  CM, De Siati  DR,  et al.  Olfactory and gustatory dysfunctions as a clinical presentation of mild-to-moderate forms of the coronavirus disease (COVID-19): a multicenter European study.   Eur Arch Otorhinolaryngol. 2020;277(8):2251-2261. doi:10.1007/s00405-020-05965-1PubMedGoogle ScholarCrossref

52.

Helms  J, Kremer  S, Merdji  H,  et al.  Neurologic features in severe SARS-CoV-2 infection.   N Engl J Med. 2020;382(23):2268-2270. doi:10.1056/NEJMc2008597PubMedGoogle ScholarCrossref

53.

Spinato  G, Fabbris  C, Polesel  J,  et al.  Alterations in smell or taste in mildly symptomatic outpatients with SARS-CoV-2 infection.   JAMA. 2020;323(20):2089-2209. doi:10.1001/jama.2020.6771
ArticlePubMedGoogle ScholarCrossref

54.

Hendren  NS, Drazner  MH, Bozkurt  B, Cooper  LT  Jr.  Description and proposed management of the acute COVID-19 cardiovascular syndrome.   Circulation. 2020;141(23):1903-1914. doi:10.1161/CIRCULATIONAHA.120.047349PubMedGoogle ScholarCrossref

55.

Myers  LC, Parodi  SM, Escobar  GJ, Liu  VX.  Characteristics of hospitalized adults with COVID-19 in an integrated health care system in California.   JAMA. 2020;323(21):2195-2198. doi:10.1001/jama.2020.7202
ArticlePubMedGoogle ScholarCrossref

56.

Yang  X, Yu  Y, Xu  J,  et al.  Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: a single-centered, retrospective, observational study.   Lancet Respir Med. 2020;8(5):475-481. doi:10.1016/S2213-2600(20)30079-5PubMedGoogle ScholarCrossref

57.

Götzinger  F, Santiago-García  B, Noguera-Julián  A, Lanaspa  M, Lancella  L, Carducci  FIC.  COVID-19 in children and adolescents in Europe: a multinational, multicentre cohort study.   Lancet Child Adolesc Health. Published online June 25, 2020. doi:10.1016/S2352-4642(20)30177-2PubMedGoogle Scholar

58.

Verdoni  L, Mazza  A, Gervasoni  A,  et al.  An outbreak of severe Kawasaki-like disease at the Italian epicentre of the SARS-CoV-2 epidemic: an observational cohort study.   Lancet. 2020;395(10239):1771-1778. doi:10.1016/S0140-6736(20)31103-XPubMedGoogle ScholarCrossref

59.

Whittaker  E, Bamford  A, Kenny  J,  et al.  Clinical characteristics of 58 children with a pediatric inflammatory multisystem syndrome temporally associated with SARS-CoV-2.   JAMA. Published online June 8, 2020. doi:10.1001/jama.2020.10369
ArticlePubMedGoogle Scholar

60.

Levin  M.  Childhood multisystem inflammatory syndrome: a new challenge in the pandemic.   N Engl J Med. Published online June 29, 2020. doi:10.1056/NEJMe2023158PubMedGoogle Scholar

61.

Wang  W, Xu  Y, Gao  R,  et al.  Detection of SARS-CoV-2 in different types of clinical specimens.   JAMA. 2020;323(18):1843-1844. doi:10.1001/jama.2020.3786
ArticlePubMedGoogle Scholar

62.

Sethuraman  N, Jeremiah  SS, Ryo  A.  Interpreting diagnostic tests for SARS-CoV-2.   JAMA. Published online May 6, 2020. doi:10.1001/jama.2020.8259
ArticlePubMedGoogle Scholar

63.

Kucirka  LM, Lauer  SA, Laeyendecker  O, Boon  D, Lessler  J.  Variation in false-negative rate of reverse transcriptase polymerase chain reaction-based SARS-CoV-2 tests by time since exposure.   Ann Intern Med. Published online May 13, 2020. doi:10.7326/M20-1495PubMedGoogle Scholar

64.

Williams  E, Bond  K, Zhang  B, Putland  M, Williamson  DA.  Saliva as a non-invasive specimen for detection of SARS-CoV-2.   J Clin Microbiol. Published online April 21, 2020. doi:10.1128/JCM.00776-20PubMedGoogle Scholar

65.

Guo  L, Ren  L, Yang  S,  et al.  Profiling early humoral response to diagnose novel coronavirus disease (COVID-19).   Clin Infect Dis. Published online March 21, 2020. doi:10.1093/cid/ciaa310PubMedGoogle Scholar

66.

Zhao  J, Yuan  Q, Wang  H,  et al.  Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease 2019.   Clin Infect Dis. Published online March 28, 2020. doi:10.1093/cid/ciaa344PubMedGoogle Scholar

67.

Bond  K, Nicholson  S, Hoang  T, Catton  M, Howden  B, Williamson  D. Post-Market Validation of Three Serological Assays for COVID-19. Office of Health Protection, Commonwealth Government of Australia; 2020.

68.

Chen  N, Zhou  M, Dong  X,  et al.  Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study.   Lancet. 2020;395(10223):507-513. doi:10.1016/S0140-6736(20)30211-7PubMedGoogle ScholarCrossref

69.

Wu  C, Chen  X, Cai  Y,  et al.  Risk factors associated with acute respiratory distress syndrome and death in patients with coronavirus disease 2019 pneumonia in Wuhan, China.   JAMA Intern Med. Published online March 13, 2020. doi:10.1001/jamainternmed.2020.0994
ArticlePubMedGoogle Scholar

70.

Shi  H, Han  X, Jiang  N,  et al.  Radiological findings from 81 patients with COVID-19 pneumonia in Wuhan, China: a descriptive study.   Lancet Infect Dis. 2020;20(4):425-434. doi:10.1016/S1473-3099(20)30086-4PubMedGoogle ScholarCrossref

71.

Bernheim  A, Mei  X, Huang  M,  et al.  Chest CT findings in coronavirus disease-19 (COVID-19): relationship to duration of infection.   Radiology. 2020;295(3):200463. doi:10.1148/radiol.2020200463PubMedGoogle Scholar

72.

Alhazzani  W, Møller  MH, Arabi  YM,  et al.  Surviving Sepsis Campaign: guidelines on the management of critically ill adults with coronavirus disease 2019 (COVID-19).   Intensive Care Med. 2020;46(5):854-887. doi:10.1007/s00134-020-06022-5PubMedGoogle ScholarCrossref

73.

Wilson  KC, Chotirmall  SH, Bai  C, Rello  J; International Task Force on COVID-19. COVID-19: Interim Guidance on Management Pending Empirical Evidence. American Thoracic Society; 2020. Accessed July 7, 2020. https://www.thoracic.org/covid/covid-19-guidance.pdf

74.

Coronavirus disease 2019 (COVID-19) treatment guidelines. National Institutes of Health website. Updated June 25, 2020. Accessed July 1, 2020. https://www.covid19treatmentguidelines.nih.gov/

75.

Marini  JJ, Gattinoni  L.  Management of COVID-19 respiratory distress.   JAMA. Published online April 24, 2020. doi:10.1001/jama.2020.6825
ArticlePubMedGoogle Scholar

76.

Hager  DN, Krishnan  JA, Hayden  DL, Brower  RG; ARDS Clinical Trials Network.  Tidal volume reduction in patients with acute lung injury when plateau pressures are not high.   Am J Respir Crit Care Med. 2005;172(10):1241-1245. doi:10.1164/rccm.200501-048CPPubMedGoogle ScholarCrossref

77.

Tobin  MJ.  Basing respiratory management of COVID-19 on physiological principles.   Am J Respir Crit Care Med. 2020;201(11):1319-1320. doi:10.1164/rccm.202004-1076EDPubMedGoogle ScholarCrossref

78.

Rawson  TM, Moore  LSP, Zhu  N,  et al.  Bacterial and fungal co-infection in individuals with coronavirus: a rapid review to support COVID-19 antimicrobial prescribing.   Clin Infect Dis. Published online May 2, 2020. doi:10.1093/cid/ciaa530PubMedGoogle Scholar

79.

Sanders  JM, Monogue  ML, Jodlowski  TZ, Cutrell  JB.  Pharmacologic treatments for coronavirus disease 2019 (COVID-19).   JAMA. Published online April 13, 2020. doi:10.1001/jama.2020.6019
ArticlePubMedGoogle Scholar

80.

Wang  M, Cao  R, Zhang  L,  et al.  Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro.   Cell Res. 2020;30(3):269-271. doi:10.1038/s41422-020-0282-0PubMedGoogle ScholarCrossref

81.

Magagnoli  J, Narendran  S, Pereira  F,  et al. Outcomes of hydroxychloroquine usage in United States veterans hospitalized with COVID-19. MedRxiv. Preprint posted June 5, 2020. doi:10.1016/j.medj.2020.06.001

82.

Mahévas  M, Tran  VT, Roumier  M,  et al.  Clinical efficacy of hydroxychloroquine in patients with covid-19 pneumonia who require oxygen: observational comparative study using routine care data.   BMJ. 2020;369:m1844. doi:10.1136/bmj.m1844PubMedGoogle ScholarCrossref

83.

Tang  W, Cao  Z, Han  M,  et al.  Hydroxychloroquine in patients with mainly mild to moderate coronavirus disease 2019: open label, randomised controlled trial.   BMJ. 2020;369:m1849. doi:10.1136/bmj.m1849PubMedGoogle ScholarCrossref

84.

Rosenberg  ES, Dufort  EM, Udo  T,  et al.  Association of treatment with hydroxychloroquine or azithromycin with in-hospital mortality in patients with COVID-19 in New York State.   JAMA. 2020;323(24):2493-2502. doi:10.1001/jama.2020.8630
ArticlePubMedGoogle ScholarCrossref

85.

Geleris  J, Sun  Y, Platt  J,  et al.  Observational study of hydroxychloroquine in hospitalized patients with COVID-19.   N Engl J Med. 2020;382(25):2411-2418. doi:10.1056/NEJMoa2012410PubMedGoogle ScholarCrossref

86.

Scavone  C, Brusco  S, Bertini  M,  et al.  Current pharmacological treatments for COVID-19: what’s next?   Br J Pharmacol. Published online April 24, 2020. doi:10.1111/bph.15072PubMedGoogle Scholar

87.

Cao  B, Wang  Y, Wen  D,  et al.  A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19.   N Engl J Med. 2020;382(19):1787-1799. doi:10.1056/NEJMoa2001282PubMedGoogle ScholarCrossref

88.

Beigel  JH, Tomashek  KM, Dodd  LE,  et al.  Remdesivir for the treatment of COVID-19: preliminary report.   N Engl J Med. Published online May 22, 2020. doi:10.1056/NEJMoa2007764PubMedGoogle Scholar

89.

Goldman  JD, Lye  DCB, Hui  DS,  et al.  Remdesivir for 5 or 10 days in patients with severe COVID-19.   N Engl J Med. Published online May 27, 2020. doi:10.1056/NEJMoa2015301PubMedGoogle Scholar

90.

Shen  C, Wang  Z, Zhao  F,  et al.  Treatment of 5 critically ill patients with COVID-19 with convalescent plasma.   JAMA. 2020;323(16):1582-1589. doi:10.1001/jama.2020.4783
ArticlePubMedGoogle ScholarCrossref

91.

Li  L, Zhang  W, Hu  Y,  et al.  Effect of convalescent plasma therapy on time to clinical improvement in patients with severe and life-threatening COVID-19: a randomized clinical trial.   JAMA. Published online June 3, 2020. doi:10.1001/jama.2020.10044
ArticlePubMedGoogle Scholar

92.

Wang  C, Li  W, Drabek  D,  et al.  A human monoclonal antibody blocking SARS-CoV-2 infection.   Nat Commun. 2020;11(1):2251. doi:10.1038/s41467-020-16256-yPubMedGoogle ScholarCrossref

93.

Brouwer  PJM, Caniels  TG, van der Straten  K,  et al.  Potent neutralizing antibodies from COVID-19 patients define multiple targets of vulnerability.   Science. Published online June 15, 2020. doi:10.1126/science.abc5902.PubMedGoogle Scholar

94.

Alzghari  SK, Acuña  VS.  Supportive treatment with tocilizumab for COVID-19: a systematic review.   J Clin Virol. 2020;127:104380. doi:10.1016/j.jcv.2020.104380PubMedGoogle Scholar

95.

Horby  P, Lim  WS, Emberson  J, Mafham  M, Bell  J,  et al. Effect of dexamethasone in hospitalized patients with COVID-19: preliminary report. medRxiv. Published online June 22, 2020. doi:10.1101/2020.06.22.20137273:24

96.

Wadhera  RK, Wadhera  P, Gaba  P,  et al.  Variation in COVID-19 hospitalizations and deaths across New York City boroughs.   JAMA. 2020;323(21):2192-2195. doi:10.1001/jama.2020.7197
ArticlePubMedGoogle ScholarCrossref

97.

Price-Haywood  EG, Burton  J, Fort  D, Seoane  L.  Hospitalization and mortality among black patients and white patients with COVID-19.   N Engl J Med. 2020;382(26):2534-2543. doi:10.1056/NEJMsa2011686PubMedGoogle ScholarCrossref

98.

COVID-19 in racial and ethnic minority groups. Centers for Disease Control and Prevention website. Updated June 25, 2020. Accessed July 7, 2020. https://www.cdc.gov/coronavirus/2019-ncov/need-extra-precautions/racial-ethnic-minorities.html

99.

Pham  TM, Carpenter  JR, Morris  TP, Sharma  M, Petersen  I.  Ethnic differences in the prevalence of type 2 diabetes diagnoses in the UK: cross-sectional analysis of the health improvement network primary care database.   Clin Epidemiol. 2019;11:1081-1088. doi:10.2147/CLEP.S227621Google ScholarCrossref

100.

Prescott  HC, Angus  D.  Enhancing recovery from sepsis: a review.   JAMA. 2018;319(1):62-75. doi:10.1001/jama.2017.17687
ArticleGoogle ScholarCrossref

101.

Jüni  P, Rothenbühler  M, Bobos  P,  et al.  Impact of climate and public health interventions on the COVID-19 pandemic: a prospective cohort study.   CMAJ. 2020;192(21):E566-E573. doi:10.1503/cmaj.200920PubMedGoogle ScholarCrossref

102.

Pan  A, Liu  L, Wang  C,  et al.  Association of public health interventions with the epidemiology of the COVID-19 outbreak in Wuhan, China.   JAMA. 2020;323(19):1-9. doi:10.1001/jama.2020.6130
ArticlePubMedGoogle ScholarCrossref

103.

Coronavirus government response tracker. University of Oxford website. Accessed June 24, 2020. https://www.bsg.ox.ac.uk/research/research-projects/coronavirus-government-response-tracker

104.

Flaxman  S, Mishra  S, Gandy  A,  et al.  Estimating the effects of nonpharmaceutical interventions on COVID-19 in Europe.   Nature. Published online June 8, 2020. doi:10.1038/s41586-020-2405-7PubMedGoogle Scholar

105.

Markel  H, Lipman  HB, Navarro  JA,  et al.  Nonpharmaceutical interventions implemented by US cities during the 1918-1919 influenza pandemic.   JAMA. 2007;298(6):644-654. doi:10.1001/jama.298.6.644
ArticlePubMedGoogle ScholarCrossref

106.

Xiao  Y, Tang  B, Wu  J, Cheke  RA, Tang  S.  Linking key intervention timings to rapid decline of the COVID-19 effective reproductive number to quantify lessons from mainland China.   Int J Infect Dis. Published online June 11, 2020. doi:10.1016/j.ijid.2020.06.030PubMedGoogle Scholar

107.

Thanh Le  T, Andreadakis  Z, Kumar  A,  et al.  The COVID-19 vaccine development landscape.   Nat Rev Drug Discov. 2020;19(5):305-306. doi:10.1038/d41573-020-00073-5PubMedGoogle ScholarCrossref

108.

Lurie  N, Saville  M, Hatchett  R, Halton  J.  Developing Covid-19 vaccines at pandemic speed.   N Engl J Med. 2020;382(21):1969-1973. doi:10.1056/NEJMp2005630PubMedGoogle ScholarCrossref

#Tempos de pandemia de #Covid-19: tempos de #luto

Postado em

mulher sendo consolada por seu luto na covid-19

Escrevo esse texto no dia em que o Brasil declara 50.000 mil óbitos no país pela Covid-19. Uma dizimação humanitária nunca antes vista, nunca antes gerida, nunca antes imaginada.

Em pleno século 21, com tecnologias biomédicas, onde robôs entraram nos centros cirúrgicos, com intervenções de saúde inovadoras que prolongam vidas e aumentam a sobrevida de milhares de pessoas que há dez anos não teriam qualquer chance, hoje, seguimos determinações da Organização Mundial da Saúde para nos manter em casa, distanciados fisicamente do mundo social, das relações afetivas de forma contínua e imprevisível, pois fugimos de um vírus que já matou no mundo, 463 mil pessoas até o momento (junho/2020).

O luto

Como psicóloga especializada em luto e perdas há mais de dez anos, com uma clínica que assiste exclusivamente pacientes enlutados, por morte, entendo o quanto a trajetória do cuidado é fundamental para a construção da narrativa da morte e suas repercussões no luto pós óbito. Na grande maioria das vezes, um bom cuidado das equipes de saúde, que consideram não apenas técnicas intervencionistas, mas também escuta empática e ativa, compaixão e sensibilidade na comunicação, auxílio na expressão emocional e boa relação equipe-paciente-família, mesmo diante de prognósticos graves em doenças sem perspectivas curativas, podem transformar o processo de enfrentamento da morte e facilitar as  resposta do luto agudo no momento do pós-óbito imediato.

 

A Covid-19 retirou esses cenários amortecedores do luto: não há trajetória de cuidado compartilhada, não há informação adequada, pois as equipes estão sobrecarregadas. Não há tempo ou disponibilidade para muitas equipes trabalharem a relação com o paciente e família, seja pelo risco de contaminação, pelos cuidados intensivos exigidos em um curto espaço de tempo, seja pela ausência de vínculo. Desta forma, todas as perspectivas apontam para caminhos emocionalmente tortuosos e desafiantes relacionados à saúde mental dos que cuidam e dos que sobrevivem à perda. Aspectos traumáticos das perdas pela Covid-19 deixarão marcas profundas, na sociedade de uma forma geral.

Processos de lutos graves e complicados que acometem a minoria dos enlutados, variam normalmente entre 8 a 12% da população geral, e, segundo algumas discussões recentes em grupos de teóricos e pesquisadores internacionais que se dedicam à temática do Luto Complicado, podemos ter um acréscimo de até 30% de casos graves de pessoas enlutadas. Espera-se que o impacto psíquico nas respostas de luto, com as sobreposições de sofrimento emocional  por comorbidades psiquiátricas, como ansiedade e depressão, seja de, pelo menos, uma década.

Vivemos tempos de luto e tempos de risco emocional severo.

No Brasil, são 50 mil mortos no momento, e se para cada uma morte temos em torno de quatro a onze pessoas apresentando reações agudas de luto, podemos prever que em torno de 200 mil pessoas estarão em intenso sofrimento emocional. Esses números não são apenas assustadores e dramáticos, são também alarmantes. Portanto, as ações precoces voltadas para o luto, nesse momento, são urgentes.

 

A resposta de luto é uma reação normal, esperada e prevista quando perdemos um ente querido, quando um vínculo significativo é rompido. Naturalmente nos enlutamos e, algum tempo neste processo, pranteamos e lamentamos quem perdemos.

Diante da pandemia da Covid-19 com múltiplas mortes que podem acontecer em uma mesma família pela virulência do SARS-CoV-2, o processo de luto pode encontrar variáveis refratárias as intervenções psicológicas. Como sobreviventes de uma pandemia, transtornos ligados ao estresse agudo e traumático podem repercutir na qualidade de vida emocional de muitas pessoas, empobrecendo a funcionalidade vital, chegando a situações de franco adoecimento psíquico levando até ao suicídio.

O processo propriamente de luto, pode perder, portanto, suas características de normalidade.  As circunstâncias, o contexto e as consequências da morte no cenário da Covid-19 transformam as respostas de luto de sobremaneira que ainda teremos que aguardar alguns anos para compreender a dinâmica desse luto, diferente também, de tudo que conhecemos deste processo.

Urge, portanto, a capacitação das equipe de saúde, sobretudo psicólogos e psiquiatras para que tenham conhecimento, instrumentalização e maior arsenal de intervenções apropriadas que pretendam mitigar os possíveis complicadores de um cenário de risco psíquico sem proporções. O adoecimento por luto, talvez, possa se tornar uma questão de saúde púbica.

 

Autora:

Erika Pallottino

Psicóloga ⦁ Especialista em Lutos e Perda ⦁ Sócia Fundadora e Coordenadora do Instituto Entrelaços

Referências bibliográficas:

  • The pandemic’s 4th wave; 2020. Em: https://hcldr.wordpress.com/2020/04/07/the-pandemics-4th-wave
  • STROEBE, M.; SHUT, H; VAN DEN BOUT, J. Complicated Grief – scientific foundations for heathcare professionals. Nova York: Routledge. 2013
  • EISMA, M.; BOELEN,P.; LENFERINK,L.I.M. Prolonged grief disorder following the Coronavirus (COVID-19) pandemic. Psychiatry Research; 288; 2020 https://www.elsevier.com/locate/psychres
  • ADEC –Grief, Bereavement and Death at a Distance: perspectives on the impact to the community. Conferência oral; abril; 2020. https://www.adec.org/
  • SHEAR, K. Grief in the coronavirus pandemic; Center for Complicated Grief, Columbia University; Conferência oral; abril; 2020.

#Tener #cáncer aumenta el #riesgo de muerte en pacientes con #COVID-19

Postado em Atualizado em

 

Los pacientes con COVID-19 y cáncer en progresión tuvieron un aumento de cinco veces en el riesgo de mortalidad a los 30 días, en comparación con los pacientes con cáncer y COVID-19 que estaban en remisión o no tenían evidencia de cáncer, según datos del Consorcio COVID-19 y Cáncer (CCC19).[1]

Otros factores de riesgo independientes para la mortalidad en pacientes con COVID-19 y cáncer fueron edad avanzada, género masculino, tabaquismo anterior, número de comorbilidades, estado funcional ECOG de 2 o más, y tratamiento con hidroxicloroquina más azitromicina.

De hecho, los pacientes que recibieron hidroxicloroquina y azitromicina tenían un riesgo de muerte casi tres veces mayor que quienes no habían recibido la combinación. Sin embargo, este hallazgo fue de “validez incierta debido a un alto riesgo de confusión residual; por ejemplo, los pacientes que recibieron esta combinación tenían más probabilidades de padecer una enfermedad grave o de ser hospitalizados”, destacó el Dr. Jeremy L. Warner, de Vanderbilt University Medical Center, en Nashville, Estados Unidos.

El Dr. Warner presentó estos hallazgos en una conferencia de prensa en línea. Los hallazgos adicionales del registro CCC19 se presentaron como parte del programa científico virtual del Congreso Anual de la American Society of Clinical Oncology (ASCO) 2020.

Impacto grave en pacientes con cáncer

“Para las personas con cáncer, el impacto de COVID-19 es especialmente grave, ya sea que hayan estado expuestos al virus o no. Los pacientes con cáncer suelen ser adultos mayores, a menudo con otras afecciones subyacentes, y su sistema inmunológico puede ser suprimido por el cáncer, o debido a quimioterapia, radiación u otro tratamiento”, comentó el presidente de la American Society of Clinical Oncology, Dr. Howard A. Burris III, quien moderó la conferencia de prensa, pero no participó en el estudio de los datos del registro CCC19.

“Los miembros de la American Society of Clinical Oncology nos dicen que han tenido que retrasar o modificar los planes de tratamiento para reducir el riesgo de infección de los pacientes, y no tenemos claro cuál será el impacto de estos cambios. Los retrasos en la detección y el diagnóstico del cáncer también son una preocupación importante”, continuó el Dr. Burris.

“Esto confirma los reportes que han salido de otros centros, incluidas otras partes del mundo, donde han descubierto que las personas con cáncer y COVID-19 tienen peor desenlace”, indicó el Dr. Andrew T. Chan, maestro en salud pública del Massachusetts General Hospital en Boston, Estados Unidos, quien no participó en la investigación.

El grupo del Dr. Chan ha desarrollado una aplicación de estudio de síntomas de COVID-19 con el objetivo de definir si las personas que viven con cáncer tienen mayor riesgo de infecciones, además de saber si el cáncer es un factor de riesgo independiente para la gravedad o mortalidad de COVID-19.

“Utilizando datos de nuestra aplicación pudimos demostrar que las personas que informaron vivir con cáncer tenían mayor riesgo de desarrollar COVID, y eran más propensas a ser hospitalizadas en relación con esta enfermedad”, añadió el Dr. Chan.

Detalles del estudio

El registro CCC19 recopila información de 104 instituciones participantes en Estados Unidos y Canadá, así como datos anónimos de personas en Estados Unidos, Argentina, Canadá, Unión Europea y Reino Unido.

La muestra de 928 pacientes que presentó el Dr. Warner estaba equilibrada por género. La mediana de edad fue de 66 años, y 30% de los pacientes tenía 75 años o más.

En total, 39% de los pacientes estaba en tratamiento activo contra el cáncer, y 43% tenía una enfermedad medible. El cáncer de mama fue el diagnóstico más común, seguido por cáncer de próstata, cánceres gastrointestinales, linfomas y cánceres torácicos.

Dos tercios de los pacientes (68%) tenían un estado funcional ECOG de 0 o 1; 8% un estado funcional de 2, y 5% un estado funcional de 3 o 4. Los pacientes restantes tenían un estado funcional desconocido.

Poco más de la mitad de los pacientes (52%) nunca fueron fumadores; 37% exfumadores, y 5% fumadores actuales; el resto de los pacientes (6%) tenía un estado de tabaquismo desconocido.

En una mediana de seguimiento de 21 días, 121 pacientes (13%) habían muerto. Todos los decesos ocurrieron dentro de los 30 días posteriores al diagnóstico de COVID-19. Entre los pacientes que fallecieron, 78 eran varones; 64 exfumadores; 70 tenían 75 años o más; 41 tenían cáncer activo o estable; 25 cáncer en progresión, y 42 un estado funcional ECOG de 2 o más.

En total, 466 pacientes fueron hospitalizados; de ellos 106 (23%) fallecieron. Entre los 132 pacientes ingresados en una unidad de cuidados intensivos, 50 (38%) fallecieron, incluidos 27 pacientes de 75 años o más, y 15 con un estado funcional ECOG de 2 o más. De los 116 pacientes que requirieron intubación, 50 (43%) fallecieron, incluidos 26 que tenían 75 años o más, y 11 que tenían un estado funcional de 2 o más.

Todavía es temprano, y se necesitará un tamaño de muestra más grande con un seguimiento más largo para obtener una imagen más completa de cómo COVID-19 afecta a subconjuntos de pacientes específicos a lo largo del tiempo, destacó el Dr. Warner.

La American Society of Clinical Oncology ha establecido su propio registro COVID-19 para recopilar datos a corto y largo plazos durante la pandemia.

“Podremos aprender sobre la forma en que la pandemia ha afectado la atención del cáncer, así como los efectos a largo plazo de COVID-19 en pacientes con cáncer, y comprender qué enfoques de atención funcionan mejor”, agregó el Dr. Richard L. Schilsky, director médico y vicepresidente ejecutivo de la American Society of Clinical Oncology, durante la sesión informativa.

Esta noticia fue publicada originalmente en MDEdge.com.

El estudio de los datos del registro CCC19 recibió apoyo de National Institutes of Health y American Cancer Society. El Dr. Warner reveló acciones/propiedad en HemOnc.org, consultoría para IBM y Westat, y estipendos de viaje de IBM. Los doctores Burris, Schilsky y Chan han declarado no tener ningún conflicto de interés económico pertinente.

#Comparing #COVID-19, Flu Death Tolls ‘Extremely Dangerous’

Postado em

 

The number of COVID-19 deaths cannot be directly compared to the number of seasonal influenza deaths because they are calculated differently, researchers say in a report released today.

Whereas COVID-19 death rates are determined from actual counts of people who have died, seasonal influenza death rates are estimated by the Centers for Disease Control and Prevention (CDC) using population modeling algorithms, explains Jeremy Samuel Faust, MD, with Harvard Medical School and Brigham and Women’s Hospital, Division of Health Policy and Public Health in Boston, Massachusetts.

The CDC estimates that between 24,000 and 62,000 people died from influenza during the 2019–2020 season (through April 4). At the time of the analysis (as of April 28), COVID-19 deaths had reached 65,000 in the United States.

Some government officials and others have said the numbers seem similar and have used the comparison as an argument for reopening certain areas.

But making that comparison “is extremely dangerous,” Faust told Medscape Medical News.

“COVID-19 is far more dangerous and is wreaking far more havoc than seasonal influenza ever has,” he said.

Faust coauthored the perspective article, published online in JAMA Internal Medicine, with Carlos del Rio, MD, Division of Infectious Diseases at Emory University School of Medicine in Atlanta, Georgia.

The message and methodology of Faust’s and del Rio’s article are on target, according to Jonathan L. Temte, MD, PhD, who has been working in influenza surveillance for almost 25 years.

Current flu data draw on limited information from primary care practices and hospitals, said Temte, associate dean for public health and community engagement at the University of Wisconsin School of Medicine and Public Health in Madison. The estimates help bridge the gaps, he said, but the system is inherently vulnerable to error.

“Comparing them ― as so many people in this country have done ― to try to diminish the impact of SARS-CoV2 is not fair,” he said.

Estimated vs Actual Influenza Deaths

The authors illustrate the difference in the way rates of death from influenza are calculated: “Between 2013–2014 and 2018–2019, the reported yearly estimated influenza deaths ranged from 23,000 to 61,000. Over that same time period, however, the number of counted influenza deaths was between 3448 and 15,620 yearly.”

“It’s apparent [the CDC has] been overestimating,” Faust said. “If you publish a number on the higher end of the estimate, people might take your public health messages more seriously, such as, it’s important to get your yearly flu shot.”

He added that until influenza death rates started to be compared with COVID-19 rates, “there was never really a downside” to reporting estimates.

Temte said he doesn’t regard overestimating flu deaths as intentional but rather the result of a longstanding “bias against the elderly in this country” that the estimates are meant to account for.

For example, he says, reporting influenza deaths is mandatory when such deaths involve persons younger than 18 years but not when they involve adults.

Also, traditionally, influenza has been seen “as a cause of death in people with multiple comorbidities that was just part and parcel of wintertime,” Temte said.

“The likelihood of being tested for influenza goes down greatly when you’re older,” he said. “This is slowly changing.”

The CDC acknowledges on its website that it “does not know the exact number of people who have been sick and affected by influenza because influenza is not a reportable disease in most areas of the US.”

It adds that the burden is estimated through the US Influenza Surveillance System, which covers approximately 8.5% of the US population.

Comparing Recorded Deaths

It’s more accurate and meaningful to compare actual numbers of deaths for the diseases, Faust and del Rio say in their article.

When the authors made that comparison, they drew a stark contrast.

There were 15,455 recorded COVID-19 deaths in the week that ended April 21. The week before, the number of recorded deaths was 14,478, they found. (Those were the two most recent weeks before they submitted their article for publication.)

In comparison, counted deaths ranged from 351 to 1626 during the peak week of the seven influenza seasons between 2013–2014 and 2019–2020. The average counted deaths for the peak week of the seven seasons was 752.4 (95% confidence interval [CI], 558.8 – 946.1).

“These statistics on counted deaths suggest that the number of COVID-19 deaths for the week ending April 21 was 9.5-fold to 44.1-fold greater than the peak week of counted influenza deaths during the past seven influenza seasons in the US, with a 20.5-fold mean increase (95% CI, 16.3 – 27.7),” the authors write.

However, Natasha Chida, MD, MSPH, an infectious disease physician and assistant professor at the Johns Hopkins University School of Medicine in Baltimore, Maryland, told Medscape Medical News that the actual number of deaths doesn’t tell the complete flu story either. That count would miss people who later died from secondary complications associated with influenza, she said.

“There’s just no way to reliably count influenza deaths,” she said. “I think if we required it as a reported illness, that would be the ideal situation, but there’s so much flu every year that that probably would not be practical.”

She said she agrees that rates of influenza deaths and rates of COVID-19 deaths cannot be fairly compared.

What the authors don’t touch on, she said, is that flu season lasts 4 to 6 months a year, and just 3 months into the coronavirus pandemic, US deaths due to COVID-19 are already higher than those for seasonal influenza.

“Even if we look at it in the way that people who think we can compare flu and coronavirus do, it’s still not going to work out in their favor from a numbers standpoint,” she said.

The article clarifies the differences for “people who don’t live in the flu world,” she said.

“It is not accurate to compare the two for the reasons the authors described and also because they are very different diseases,” she added.

Real-Life Validation

Faust told Medscape Medical News that real-life experiences add external validity to their analysis.

Differences in the way deaths are calculated does not reflect frontline clinical conditions during the COVID-19 crisis, with hospitals stretched past their limits, ventilator shortages, and bodies stacking up in some overwhelmed facilities, the authors say.

Temte said the external validation of the numbers also rings true in light of his own experience.

He said that in the past 2 months, he has known two people who have had family members who died of COVID-19.

Conversely, “I would have to search long and hard to come up with people I have known or have been one degree of separation from” who have died from influenza, Temte said.

The authors, Temte, and Chida report no relevant financial relationships.

JAMA Intern Med. Published online May 14, 2020. Full text

Marcia Frellick is a freelance journalist based in Chicago. She has previously written for the Chicago Tribune and Nurse.com and was an editor at the Chicago Sun-Times, the Cincinnati Enquirer, and the St. Cloud (Minnesota) Times. Follow her on Twitter at @mfrellick.

#Primer estudio para conocer el impacto de la #Covid-19 en #Párkinson

Postado em

El estudio Covid & Párkinson analizará en qué medida la infección por SARS-CoV-2 afecta a pacientes con esta neurodegeneración y, si en el caso de desarrollar la Covid-19, cuál es su gravedad.

Un enfermo de Párkinson con su cuidador.
Un nuevo estudio analizará el impacto de la Covid-19 en Párkinson.

La enfermedad de Párkinson, como otras muchas patologías de carácter neurodegenerativo, han estado y están en el punto de mira del contexto Covid-19 al afectar, mayoritariamente, a personas de edad avanzada con comorbilidades que podrían considerarse de mayor riesgo para la infección por SARS-CoV-2 o que ésta se desarrolle con sintomatología más grave.

Sin embargo, hasta el momento, apenas hay información de cómo la infección por coronavirus afecta a los pacientes con esta enfermedad. Así, conocer cómo la pandemia está afectando a este colectivo de enfermos y a su entorno y emprender las medidas más adecuadas es el objetivo marcado por el recién iniciado ‘Estudio Covid & Parkinson’ que desarrollan la Fundación Curemos el Párkinson, junto con la Asociación Párkinson Galicia-Coruña y el Observatorio Párkinson de la Federación Española de Párkinson, con el aval científico del Grupo de Estudio de Trastornos del Movimiento de la Sociedad Española de Neurología (SEN).

Sin evidencias contundentes, pero sugerentes

En España, el Párkinson afecta a unas 160.000 personas, de las cuales el 37% la padecen en estado avanzado. Diego Santos García, neurólogo del Complejo Hospitalario Universitario de La Coruña (CHUAC) y coordinador del proyecto, indica a DM que “no hay evidencia de que tener enfermedad de Párkinson provoque que el paciente se encuentre inmunodeprimido y sea más susceptible a infectarse con el virus”.

Recalca que, aunque tampoco hay datos de un peor pronóstico en caso de sufrir la infección, es importante tener en cuenta dos aspectos: la edad y el estadio de la enfermedad neurológica. “El Parkinson es más frecuente en pacientes de edad avanzada y se sabe que el riesgo de complicaciones es mayor en este grupo de pacientes. Además, es posible que el desarrollo de la infección en parkinsonianos con un estadio evolucionado de la enfermedad, con problemas de movilidad, para tragar, demencia, limitaciones respiratorias, entre otros, sí pueda suponer un mayor riesgo de complicaciones, pero no hay evidencia científica”.

El ‘Estudio Covid & Párkinson’ pretende, por tanto, recoger información de una muestra representativa de esta población que ayude a conocer el estado actual de los afectados y el impacto real que esta pandemia tiene sobre ellos”, señala Santos, también secretario del Grupo de Estudio de Trastornos del Movimiento de la Sociedad Española de Neurología (SEN) y vicepresidente de la Fundación Curemos el Parkinson.

El proyecto se llevará a cabo mediante una encuesta ‘on-line’ anónima y voluntaria a la que la persona con Parkinson o su cuidador/a accederán a través de los portales web y redes sociales de las entidades que colaboran en el análisis. Recogerá también información acerca del número de casos positivos, el número de fallecidos y la relación entre Parkinson y el riesgo de sufrir una infección y/o fallecer por la Covid-19.

Dificultades añadidas

La información sobre impacto que está teniendo la Covid-19 en los pacientes con enfermedad de Parkinson es prácticamente nula y las escasas publicaciones existentes se basan en cartas de opinión o recomendaciones, “pero no hay datos actuales sobre cómo está afectando la pandemia a los pacientes y si realmente la infección por SRAS-CoV-2 es más frecuente y grave en este grupo de pacientes”, añade Santos, quien recalca, no obstante, las dificultades por las que atraviesa este colectivo, en relación con su neurodegeneración.

 

 “La situación actual provoca que las personas afectadas no puedan acudir a las terapias de rehabilitación necesarias para su mejora, lo que provoca una mayor aparición de los síntomas y un menor control de los mismos. Además, el confinamiento puede generar soledad y afectar a la salud psicológica y emocional de la persona”, explica Leopoldo Cabrera, presidente de la Federación Española de Párkinson.

La encuesta se realiza en toda Espña y está dirigida a personas con Parkinson, familiares o personas cuidadoras que residan en este país. El cierre del estudio está previsto para el segundo semestre de 2020 y posteriormente se realizará una recogida y análisis de los datos.

#El #SARS-CoV-2 muestra una gran diversidad clínica de síntomas

Postado em

Un informe del ISCIII analiza las principales manifestaciones del COVID-19

El SARS-CoV-2 afecta sobre todo a los pulmones, pero también puede infectar numerosos órganos, y muestra una gran diversidad clínica de síntomas y manifestaciones, según el ‘Informe del Grupo de Análisis Científico de Coronavirus del Instituto de Salud Carlos III’ (GACC-ISCIII). El periodo de incubación de la enfermedad oscila entre los cuatro y los 14 días después de la exposición al virus.

Los síntomas suelen aparecer cinco días después de la exposición, y cerca del 80% de los pacientes no tiene síntomas o muestra manifestaciones leves de la enfermedad. Normalmente, el sistema inmunitario es capaz de controlar el virus antes de que se extienda por el organismo, evitando que llegue a los pulmones. En el resto de la población la COVID-19 se agrava y puede provocar diferentes cuadros clínicos.

En caso de complicaciones, son frecuentes los problemas pulmonares, que en ocasiones llevan a una fase crítica de la enfermedad, con problemas respiratorios y daños en otros órganos. En un 2-3% de casos la enfermedad provoca la muerte. En la aparición y desarrollo de la COVID-19 hay diversos factores que influyen en el riesgo de cada persona, como la edad, la carga viral, el género, la genética, el ambiente, las patologías previas, etc.

Los principales síntomas de la COVID-19 son la fiebre, la fatiga, la dificultad para respirar, la tos seca, el dolor de garganta, la pérdida de gusto y olfato, los dolores musculares y de cabeza… Estos síntomas no siempre aparecen a la vez ni con la misma intensidad.

Principales manifestaciones clínicas

  1. Infección en los pulmones, con posible falta de oxígeno y aparición de neumonía.
  2. Afectación de los riñones, incluido el fallo renal agudo.
  3. Cardiopatías, como arritmias, trombos o infartos.
  4. Fallos hepáticos.
  5. Alteraciones en el sistema digestivo, con náuseas, diarrea, dolor abdominal…
  6. Aparición de coágulos sanguíneos.
  7. Afectaciones neurológicas, como migrañas, convulsiones, meningitis e ictus.
  8. Respuesta inmunitaria descontrolada que puede ocasionar un fallo multiorgánico.

 

El SARS-CoV-2 muestra una gran diversidad clínica de síntomas.Una de las principales preocupaciones es controlar la respuesta inmunitaria que el cuerpo produce cuando se agrava la infección en los pulmones. La respuesta inmunitaria suele controlar el virus y frena la COVID-19. Pero, a veces, esta respuesta defensiva se descontrola y provoca una ‘tormenta’ de citoquinas que puede provocar el fallo multiorgánico y el fallecimiento del paciente.

#Cuidados paliativos na pandemia #Covid-19: além dos ventiladores e salvando vidas

Postado em Atualizado em

médico levando paciente para UTI para cuidados paliativos na covid-19

No final de março foi publicado um artigo na revista canadense CMAJ falando sobre os desafios envolvidos na prestação de cuidados paliativos na pandemia de Covid-19 com o título adaptado acima.

Cuidados paliativos e Covid-19

Seguem abaixo alguns pontos-chave:

  • Haverá sobrecarga do sistema de saúde além da capacidade e os serviços de CP serão necessários na maioria dos cenários de atendimento como: unidades de terapia intensiva (UTI), enfermarias, departamentos de emergência e instituições de longa permanência;
  • A tomada de decisão compartilhada entre médicos e pacientes é central principalmente no final da vida, porém no contexto da pandemia a autonomia do paciente para escolher medidas que prolonguem a vida ou o local de morte será afetada por diretrizes de saúde pública e disponibilidade de recursos;
  • Epidemias anteriores ensinaram muito sobre melhor forma de triar pacientes que necessitam de cuidados, e parte desse trabalho pode ser adaptada aos cuidados paliativos; mas pouco foi escrito sobre como gerenciar aqueles que não recebem medidas de sustentação da vida;
  • Aconselha-se agir logo para armazenar medicamentos e suprimentos usados em cuidados paliativos, treinar a equipe para atender às necessidades de cuidados paliativos, focar em populações marginalizadas para garantir que todos os pacientes são tratados de forma equitativa;
  • A pandemia tem sido trágica para muitas pessoas em todo o mundo. Deixar de fornecer cuidados paliativos eficazes aumentaria essa tragédia.

 

Manejo

É destacado também um plano de CP de manejo do Covid-19:

  • Disponibilizar medicamentos utilizados no manejo de sintomas (morfina, haloperidol, midazolam e escopolamina);
  • Suspender regras que limitam a disponibilidade e prescrição de morfina injetável;
  • Disponibilizar materiais para administração de medicações, incluindo agulhas/jelcos para acesso subcutâneo (hipodermóclise), além de bombas infusoras, equipos…
  • Disponibilizar equipamentos de proteção individual (EPI’s) para profissionais de cuidados paliativos em ambientes de cuidados prolongados e comunitários;
  • Identificar e mobilizar todos os clínicos com experiência em cuidados paliativos;
  • Capacitar/ educar profissionais da linha de frente sobre o manejo de sintomas para doenças respiratórias agudas, enfatizando a segurança dos opioides direcionados a sintomas como uma opção precoce;
  • Envolver profissionais de saúde aliados para fornecer apoio emocional aos pacientes e apoio à tristeza e luto aos membros da família;
  • Identificar enfermarias separadas e áreas não clínicas em locais agudos apropriados para aqueles que se espera que morram, ou seja, unidades de cuidados paliativos para pacientes com Covid-19;
  • Adotar um sistema de triagem para determinar quais pacientes necessitam de consulta especializada em cuidados paliativos e quais pacientes podem ser vistos virtualmente;
  • Os profissionais devem revisar os planos de cuidado quanto à instituição de medidas avançadas de suporte à vida em pacientes doenças crônicas avançadas (ex.: câncer avançado, DPOC/ICC/IR estágio final, síndromes demenciais) É improvável que sobrevivam e se recuperem após a admissão em uma UTI;
  • Maximizar o uso de telemedicina, tanto para eficiência quanto para reduzir infecções;
  • Os profissionais de CP devem atentar para pacientes marginalizados. Quando o sistema de saúde está sobrecarregado, a desigualdade sistêmica piora;
  • Protocolos para triagem de cuidados intensivos podem ser implementados. Pacientes que não recebem cuidados críticos devem ser a principal prioridade dos cuidados paliativos. Todos os pacientes devem ser atendidos.

 

Encaminhamento para cuidados paliativos

Há sugestão de uma ferramenta de triagem para encaminhamento aos CP.

Médicos que não são especialistas em CP (hospitalistas, médicos de família, intensivistas, enfermeiros) devem:

  • Identificar e tratar: dor, dispneia, delirium hiperativo e hipersecreção respiratória;
  • Abordar o luto do cuidador do paciente;
  • Discutir sobre prognóstico, objetivos do tratamento, medidas avançadas como ressuscitação cardiopulmonar.

Médicos especialistas em CP devem dar suporte:

  • Pacientes com sintomas complexos ou refratários;
  • Pacientes que tiveram acesso negado a UTI devido a uma triagem, protocolo, apesar de querer cuidados intensivos;
  • Gerenciamento de depressão complexa, ansiedade, tristeza e sofrimento existencial;
  • Necessita de sedação paliativa;
  • Transtorno pré-existente de uso de opioides;
  • Pacientes com crianças pequenas;
  • Pacientes pertencentes a populações marginalizadas (sem-teto, encarcerados, indígenas, que correm o risco de ser mal atendidos pelo sistema de saúde).

Take-home message

O artigo conclui que os cuidados paliativos devem ser uma parte essencial de qualquer resposta a uma crise humanitária, incluindo a atual pandemia. Uma abordagem multifacetada pode orientar o planejamento e garantir que as necessidades de CP dos pacientes e de seus familiares sejam atendidas.

Qualquer sistema de triagem que não integre princípios de cuidados paliativos é antiético. Pacientes que não devem sobreviver não devem ser abandonados, mas devem receber cuidados paliativos como um direito humano.

 

Autora:

Carolina Neiva

Medicina Paliativa pelo IAMSPE-SP ⦁ Pós-graduação em Cuidados Paliativos pelo Instituto Paliar ⦁ Graduação em Medicina pela UFF.

Referência bibliográfica:

#Coronavirus: si un paciente con #cáncer tiene #fiebre hay que derivar directamente a Urgencias

Postado em

Este es uno de los principales consejos que se han transmitido en una sesión formativa ‘on line’ celebrada este martes y organizada por Hydroskin Oncology, con el apoyo de Asefarma.

Paciente con cáncer.
Paciente con cáncer.

Son muchas las dudas que tienen los pacientes con cáncer en este periodo de alerta sanitaria causado por el coronavirus. Además de la incertidumbre, el miedo también es otra constante en este colectivo, puesto que muchos no saben si tienen más riesgo de contraer la infección, qué tienen que hacer con los tratamientos oncológicos y qué ocurre si se contagian. Con el fin de resolver estas dudas y orientar la actuación del farmacéutico comunitario en su labor de asesoramiento, Hydroskin Oncology, con el apoyo de Asefarma, ha celebrado este martes una sesión formativa on line, en la que han podido participar no solo las farmacias que forman parte de las unidades Hydroskin Oncology Premium sino todas las interesadas en el tema.

En la sesión han participado Juan Manuel Martín y Montserrat Abanadas, cofundadores de Hidroskin Oncology, y uno de los mensajes en los han insistido es que si atienden a un paciente oncológico con fiebre a partir de 37 deben derivarlos directamente a los servicios de Urgencias de un hospital para que los valore. “Esta es la recomendación de la Sociedad Español de Oncología Médica (SEOM) a 31 de marzo 2020 y del Ministerio de Sanidad”, ha especificado Martín, quien ha insistido en que no deben ir al Departamento de Oncología, “porque pueden estar infectados e infectar a otros”. El experto ha señalado que no proceder de esta forma y retrasar que acuda a Urgencias, dando al paciente antitérmicos para que le baje la fiebre, es “poner en riesgo la vida del paciente”.

Abanadas ha comentado que los pacientes con cáncer deben seguir la mismas recomendaciones que el resto de personas para evitar los contagios y contagiar, pero han insistido mucho en la importancia del lavado de manos. Ahora bien, un exceso de higiene puede producir distintos tipos de dermatitis que se agravan por la xerosis o sequedad cutánea localizada generalmente en las manos y en los pies generada por los tratamientos que reciben para su enfermedad.

La experta ha afirmado que hay dos tipos de reacciones cutáneas relacionadas con la higiene de manos:

  • Dermatitis de contacto irritante: muy frecuente
  • Dermatitis alérgica de contacto: poco frecuente y tiene que ver con una alergia a algún ingrediente presente en el producto para la higiene de manos.

Higiene de manos correcta

Como han descrito, existe una serie de factores que pueden contribuir a la dermatitis relacionada con la higiene de manos, entre ellos:

  • La exposición a sustancias irritantes.
  • La utilización de agua caliente para el lavado.
  • La baja humedad relativa (más común en los meses invernales del hemisferio norte).
  • No usar cremas hidratantes después de lavárselas.
  • La calidad de las toallas de papel.
  • Las fuerzas de fricción.
  • La alergia a ingredientes.

Para minimizarlos, los ponentes han recomendado a los farmacéuticos que recuerden a estos pacientes y a sus cuidadores que no se laven con agua muy caliente, aunque escuchen que así acaban mejor con el virus. Y es que, “el virus se inactiva por acción del tensioactivo o del alcohol en la membrana
del virus, no por la elevada temperatura del agua”.

Otra recomendación es que usen jabón syndet y que se hidraten las manos tras cada lavado, eso sí, usando productos que no contengan sustancias potencialmente irritantes o alergénicas. Así, se evitarán las siguientes:

  • Perfumes y pigmentos.
  • Alcohol bencílico.
  • Alcohol estearílico.
  • Fenoxietanol.
  • Alcohol mirístico.
  • Glicol de propileno.
  • Parabenos.
  • Cloruro de benzalconio.
  • Triclosan.
  • Lauril sulfato sódico.